Math, asked by sajan6491, 16 days ago

 \tiny{3  \bigg[  { \sin^{4}  \bigg( \frac{3\pi}{2} -  \alpha   \bigg) }  +  \sin^{4} (3\pi -   \alpha  ) \bigg] - 2  \bigg [  \sin^{6} \bigg( \frac{\pi}{2}   +  \alpha  \bigg) +  { \sin}^{6}  (5\pi -  \alpha ) \bigg] }

Answers

Answered by senboni123456
13

Step-by-step explanation:

3 \left[ { \sin^{4} \left( \dfrac{3\pi}{2} - \alpha \right) } + \sin^{4} (3\pi - \alpha ) \right] - 2 \left[ \sin^{6} \left( \dfrac{\pi}{2} + \alpha \right) +\sin^{6} (5\pi - \alpha ) \right] \\

 = 3 \left[ { \cos^{4} \left(  \alpha \right) } + \sin^{4} ( \alpha ) \right] - 2 \left[ \cos^{6} \left( \alpha \right) +\sin^{6} (\alpha ) \right] \\

 = 3 \left[ \left(\cos^{2} \left(  \alpha \right)  + \sin^{2} ( \alpha ) \right)^{2} - 2 \sin ^{2} ( \alpha )  \cos^{2} ( \alpha )   \right] - 2 \left(\cos^{2} \left( \alpha \right) +\sin^{2} (\alpha )  \right) \left( \sin^{4} ( \alpha )  +  \cos^{4} ( \alpha ) - \sin^{2} ( \alpha )  \cos^{2} ( \alpha )    \right)\\

 = 3 \left[ \left(1\right)^{2} - 2 \sin ^{2} ( \alpha )  \cos^{2} ( \alpha )   \right] - 2 \left(1\right) \left( \sin^{4} ( \alpha )  +  \cos^{4} ( \alpha ) - \sin^{2} ( \alpha )  \cos^{2} ( \alpha )    \right)\\

 = 3 \left[ 1 - 2 \sin ^{2} ( \alpha )  \cos^{2} ( \alpha )   \right] - 2  \left \{  \left(\sin^{2} ( \alpha )  +  \cos^{2} ( \alpha ) \right)^{2}  - 2 \sin^{2} ( \alpha ) \cos^{2} ( \alpha )   - \sin^{2} ( \alpha )  \cos^{2} ( \alpha )    \right \}\\

 = 3 - 6 \sin ^{2} ( \alpha )  \cos^{2} ( \alpha )   - 2  \left \{  \left(1 \right)^{2}  - 3 \sin^{2} ( \alpha ) \cos^{2} ( \alpha )   \right \}\\

 = 3 - 6 \sin ^{2} ( \alpha )  \cos^{2} ( \alpha )   - 2  \left \{ 1  - 3 \sin^{2} ( \alpha ) \cos^{2} ( \alpha )   \right \}\\

 = 3 - 6 \sin ^{2} ( \alpha )  \cos^{2} ( \alpha )   - 2  +  6\sin^{2} ( \alpha ) \cos^{2} ( \alpha )   \\

 = 3   - 2     \\

 = 1     \\

Similar questions