Math, asked by Anonymous, 2 days ago

 \tiny \displaystyle  \bf \red{\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha  +  \beta  +  \gamma  +  \theta  -  \eta}{\alpha  +  \beta  +  \gamma  +  \theta   +  \eta}  \: d \alpha d \beta d \gamma d \theta d \eta}

Answers

Answered by sajan6491
5

\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha + \beta + \gamma + \theta - \eta}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}

According to symmetry

\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha + \beta + \gamma  -  \theta  +  \eta}{\alpha + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}

\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha   + \beta  - \gamma   +  \theta  +  \eta}{\alpha   + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}

\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{ \alpha    -  \beta   + \gamma   +  \theta  +  \eta}{\alpha   + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}

\displaystyle \sf \red{I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{  - \alpha     +  \beta   + \gamma   +  \theta  +  \eta}{\alpha   + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}

Take sum of 5 integrals

\displaystyle \sf \red{5I=\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \frac{  3(\alpha     +  \beta   + \gamma   +  \theta  +  \eta)}{\alpha   + \beta + \gamma + \theta + \eta} \: d \alpha d \beta d \gamma d \theta d \eta}

\displaystyle \sf \red{5I=3\int^{3}_{1} \int^{3}_{1} \int^{3}_{1} \int^{3}_{1}  \: d \alpha d \beta d \gamma d \theta d \eta}

 \large \sf \red{5I=3( {2)}^{5} }

 \large \sf \red{I={ \frac{96}{5} }^{} }

Similar questions