Math, asked by Anonymous, 1 day ago

 \tiny \displaystyle \int \limits_{0}^{ \frac{\pi}{2} } \arccos\bigg( \frac{\cos(x) }{1 + 2 \cos(x) } \bigg)dx

Answers

Answered by rashmiisu5
0

Answer:

Was this answer helpful?

Attachments:
Answered by sajan6491
14

 \displaystyle  \sf\int \limits_{0}^{ \frac{\pi}{2} } \arccos\bigg( \frac{\cos(x) }{1 + 2 \cos(x) } \bigg)dx

 \displaystyle  \sf\int \limits_{0}^{ \frac{\pi}{2} } \cos^{ - 1} \bigg( \frac{cosx }{1 + 2 cosx } \bigg)dx

 \displaystyle  \sf2\int \limits_{0}^{ { \frac{\pi}{2} } }  {tan}^{ - 1}  \sqrt{ \frac{ {cos}^{2}  \frac{x}{2} }{2 - 3 {sin}^{2}  \frac{x}{2} } }  \: dx

 \displaystyle  \sf\int \limits_{0}^{ {  \frac{\pi}{2}  } } \int \limits_{0}^{ { 1} }  \frac{\sqrt{ \frac{ {cos}^{2}  \frac{x}{2} }{2 - 3 {sin}^{2}  \frac{x}{2}}}}{1 +  \frac{ {cos}^{2} \frac{x}{2}  }{2 - 3 {sin}^{2} \frac{x}{2}} {y}^{2} }    \: dydx

 \displaystyle  \sf 2 \int \limits_{0}^{ {  1  } } \int \limits_{0}^{ 1  }  \frac{ \sqrt{2 - 3 {sin}^{2}  \frac{x}{2} }cos \frac{x}{2}  }{2 - 3 {sin}^{2}  \frac{x}{2}  + (1 -  {sin}^{2}  \frac{x}{2}) {y}^{2}  }   \: dxdy  \left[  \sqrt{3} sin \frac{x}{2}  \to \frac{ \sqrt{2} x}{ \sqrt{1 +  {x}^{2} } } \right]

 \displaystyle  \sf 8 \sqrt{3} \int \limits_{0}^{ 1 }\int \limits_{0}^{  \sqrt{3}  }  \frac{dxdy }{ (6 + 3 {y}^{2}  +  {y}^{2} {x}^{2}  )( {x}^{2} + 1 )} dx

 \displaystyle  \sf 4\sqrt{3} \int \limits_{0}^{ 1 }  \frac{dy }{3 +  {y}^{2} } \int \limits_{0}^{  \sqrt{3}}\left ( \frac{1}{ {x}^{2} + 1 }  -  \frac{ {y}^{2} }{ {y}^{2} {x}^{2} + 6 + 3 {y}^{2}   }  \right)  \: dx

 \displaystyle  \sf 4 \int \limits_{0}^{ 1 }  \frac{dy }{3 +  {y}^{2} } \left ( \frac{\pi}{  \sqrt{3}  }  -  \frac{ {y} }{  \sqrt{2 +  {y}^{2} }  }  {tan}^{ - 1}  \frac{y}{ \sqrt{2 +  {y}^{2} } }  \right)

 \displaystyle  \sf \frac{2 { \pi}^{2} }{9} - 4 \int \limits_{0}^{ 1} \left[  \frac{d}{dy} ( {tan}^{ - 1}  \sqrt{2 +  {y}^{2} } ){tan}^{ - 1} \frac{y}{ \sqrt{2 +  {y}^{2} } } \right] \: dy

 \displaystyle  \sf \frac{2 { \pi}^{2} }{9} - 4  \left[   {tan}^{ - 1}  \sqrt{2 +  {y}^{2} } {tan}^{ - 1} \frac{y}{ \sqrt{2 +  {y}^{2} } } \right]^{1}_{0} + 4 \int \limits^{1}_{0}   \frac{ {tan}^{ - 1}  \sqrt{2 +  {y}^{2} } }{(1 +  {y}^{2} ) \sqrt{2 +  {y}^{2} } } \: dy

 \displaystyle  \sf4\int \limits_{0}^{ 1} \frac{ \frac{\pi}{2}  -  {  tan}^{ - 1}  \frac{1}{ \sqrt{2 +  {y}^{2} } } }{(1 +  {y}^{2} ) \sqrt{2 +  {y}^{2} } }  \: dy

 \displaystyle  \sf 2\pi \left[   {tan}^{ - 1} \bigg( \frac{y}{ \sqrt{2 +  {y}^{2} } }  \bigg)\right]^{1}_{0}   - 4\int \limits_{0}^{ 1 } \int \limits_{0}^{ 1 }  \frac{dxdy}{(1 +  {y}^{2})(2 +  {x}^{2} +  {y}^{2}  ) }

   \displaystyle   \frac{ {\pi}^{2} }{3} - 2\left( \sf\int \limits_{0}^{1 }   \frac{dx}{1 +  {x}^{2} } \right)^{2}

 \boxed{ \therefore \displaystyle  \sf\int \limits_{0}^{ \frac{\pi}{2} } \arccos\bigg( \frac{\cos(x) }{1 + 2 \cos(x) } \bigg)dx =  \frac{5 {\pi}^{2} }{24} }

Similar questions