Math, asked by sajan6491, 5 hours ago

\tiny\sf \pink{\sin( \frac{\pi}{2020} ) + \sin( \frac{3\pi}{2020} ) + \sin( \frac{5\pi}{2020} ) + ... + \sin( \frac{2019\pi}{2020} ) = \csc( \frac{\pi}{2020} ) }

Answers

Answered by senboni123456
13

Answer:

Step-by-step explanation:

We have,

\mapsto\,\,\tt{\green{S=sin\left(\dfrac{\pi}{2020}\right)+sin\left(\dfrac{3\pi}{2020}\right)+sin\left(\dfrac{5\pi}{2020}\right)+\cdots+sin\left(\dfrac{2019\pi}{2020}\right)}}

\tt{\implies\,S=sin\left(\dfrac{\pi}{2020}\right)+sin\left(\dfrac{\pi}{2020}+\dfrac{2\pi}{2020}\right)+sin\left(\dfrac{\pi}{2020}+\dfrac{4\pi}{2020}\right)+\cdots+}\\\tt{sin\left(\dfrac{\pi}{2020}+\dfrac{2018\pi}{2020}\right)}

\bigstar\,\,\bf{Put\,\,\,\dfrac{\pi}{2020}=\theta\,\,\,\,\,and\,\,\,\,\,\dfrac{2\pi}{2020}=\phi}

So,

\tt{S=sin\left(\theta\right)+sin\left(\theta+\phi\right)+sin\left(\theta+2\phi\right)+\cdots+sin\left(\theta+1009\phi\right)}

\tt{\implies\,S=sin\left(\theta\right)+sin\left(\theta+\phi\right)+sin\left(\theta+2\phi\right)+\cdots+sin\left\{\theta+(1010-1)\phi\right\}}

\sf{We\,\,\,know\,,}\\\\\boxed{\bf{\green{sin(a)+sin(a+h)+sin(a+2h)+\cdots+sin\{a+(n-1)h\}}}}}\\\\\boxed{\bf{\green{=\dfrac{sin\left\{a+\left(\dfrac{n-1}{2}\right)h\right\}\cdot\,sin\left(\dfrac{nh}{2}\right)}{sin\left(\dfrac{h}{2}\right)}}}}}

So,

\tt{\implies\,S=\dfrac{sin\left\{\theta+\left(\dfrac{1010-1}{2}\right)\phi\right\}\cdot\,sin\left(\dfrac{1010\phi}{2}\right)}{sin\left(\dfrac{\phi}{2}\right)}}

Now, putting the value of \theta and \phi

\tt{\implies\,S=\dfrac{sin\left\{\dfrac{\pi}{2020}+\dfrac{1009}{2}\cdot\dfrac{2\pi}{2020}\right\}\cdot\,sin\left(\dfrac{1010}{2}\cdot\dfrac{2\pi}{2020}\right)}{sin\left(\dfrac{1}{2}\cdot\dfrac{2\pi}{2020}\right)}}

\tt{\implies\,S=\dfrac{sin\left(\dfrac{\pi}{2020}+\dfrac{1009\pi}{2020}\right)\cdot\,sin\left(\dfrac{\pi}{2}\right)}{sin\left(\dfrac{\pi}{2020}\right)}}

\tt{\implies\,S=\dfrac{sin\left(\dfrac{1010\pi}{2020}\right)\cdot\,1}{sin\left(\dfrac{\pi}{2020}\right)}}

\tt{\implies\,S=\dfrac{sin\left(\dfrac{\pi}{2}\right)\cdot\,1}{sin\left(\dfrac{\pi}{2020}\right)}}

\tt{\implies\,S=\dfrac{1\cdot\,1}{sin\left(\dfrac{\pi}{2020}\right)}}

\tt{\implies\,S=\dfrac{1}{sin\left(\dfrac{\pi}{2020}\right)}}

\tt{\implies\,S=cosec\left(\dfrac{\pi}{2020}\right)}

Similar questions