Math, asked by Anonymous, 5 hours ago

\tiny\sf \pink{\sin( \frac{\pi}{2020} ) + \sin( \frac{3\pi}{2020} ) + \sin( \frac{5\pi}{2020} ) + ... + \sin( \frac{2019\pi}{2020} ) = \csc( \frac{\pi}{2020} ) }

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\sf {\sin( \dfrac{\pi}{2020} ) + \sin( \dfrac{3\pi}{2020} ) + \sin( \dfrac{5\pi}{2020} ) + ... + \sin( \dfrac{2019\pi}{2020} )}

Now,

\rm :\longmapsto\:\dfrac{\pi}{2020}, \: \dfrac{3\pi}{2020},\dfrac{5\pi}{2020}, -  - \dfrac{2019\pi}{2020} \: forms \: an \: AP \: series

having

\rm :\longmapsto\:a = \dfrac{\pi}{2020}

\rm :\longmapsto\:d = \dfrac{3\pi}{2020} - \dfrac{\pi}{2020} = \dfrac{2\pi}{2020} = \dfrac{\pi}{1010}

We know, nth term of AP is given by

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:\dfrac{2019\pi}{2020} = \dfrac{\pi}{2020} + (n - 1)\dfrac{2\pi}{2020}

\rm :\longmapsto\:2019 = 1 + 2(n - 1)

\rm :\longmapsto\:2019 = 1 + 2n - 2

\rm :\longmapsto\:2019 = 2n - 1

\rm :\longmapsto\:2020= 2n

\rm\implies \:n = 1010

So, it means, above expression can be rewritten as

\rm :\longmapsto\:\sf {\sin( \dfrac{\pi}{2020} ) + \sin(\dfrac{\pi}{2020} + \dfrac{2\pi}{2020} ) + \sin(\dfrac{\pi}{2020} +  2\dfrac{2\pi}{2020} ) + ... + \sin(\dfrac{\pi}{2020} + \dfrac{2018\pi}{2020} )}

\rm =  \sf {\sin( \dfrac{\pi}{2020} ) + \sin(\dfrac{\pi}{2020} + \dfrac{2\pi}{2020} ) + \sin(\dfrac{\pi}{2020} +  2\dfrac{2\pi}{2020} ) + ... + \sin(\dfrac{\pi}{2020} + \dfrac{1009 \times 2\pi}{2020} )}

\rm =  \sf {\sin( \dfrac{\pi}{2020} ) + \sin(\dfrac{\pi}{2020} + \dfrac{2\pi}{2020} ) + \sin(\dfrac{\pi}{2020} +  2\dfrac{2\pi}{2020} ) + ... + \sin(\dfrac{\pi}{2020} +(1010 - 1) \dfrac{2\pi}{2020} )}

We know,

\boxed{\sf{sina + sin (a + d) + sin (a + 2d) +  -  -  + sin (a + (n - 1)d) = \dfrac{sin \bigg(a +  \dfrac{n - 1}{2}d\bigg)sin \bigg( \dfrac{nd}{2} \bigg)}{sin \bigg( \dfrac{d}{2} \bigg)} }}

So, here we have

\rm :\longmapsto\:a = \dfrac{\pi}{2020}

\rm :\longmapsto\:d = \dfrac{\pi}{1010}

\rm :\longmapsto\:n = 1010

So, on substituting the values, we get

\rm \:  =  \: \dfrac{sin \bigg(\dfrac{\pi}{2020} +  \dfrac{1010 - 1}{2} \times \dfrac{\pi}{1010} \bigg)sin \bigg( 1010 \times \dfrac{\pi}{2020} \bigg)}{sin \dfrac{\pi}{2020}}

\rm \:  =  \: \dfrac{sin \bigg(\dfrac{\pi}{2020} +  \dfrac{1009\pi}{2020} \bigg)sin \bigg( \dfrac{\pi}{2} \bigg)}{sin \dfrac{\pi}{2020}}

\rm \:  =  \: \dfrac{sin \bigg( \dfrac{\pi + 1009\pi}{2020} \bigg)}{sin \dfrac{\pi}{2020}}

\rm \:  =  \: \dfrac{sin \bigg( \dfrac{1010\pi}{2020} \bigg)}{sin \dfrac{\pi}{2020}}

\rm \:  =  \: \dfrac{sin \bigg( \dfrac{\pi}{2} \bigg)}{sin \dfrac{\pi}{2020}}

\rm \:  =  \: \dfrac{1}{sin \dfrac{\pi}{2020}}

\rm \:  =  \: cosec\dfrac{\pi}{2020}

Hence, Proved

Similar questions