Math, asked by Anonymous, 3 months ago


\tiny\tt\colorbox{aqua}{ꌚꂦ꒒꒦ꏂ ꓄ꀍꀤꌚ ꁅꀎꌩꌚ}
 \tiny{(1 +  \cot(o)  +  \tan(o) )( \sin(o)  -  \cos(o) ) =  \frac{ \sec(o) }{cosec {}^{2}o }  -  \frac{cosec (o)}{ \sec {}^{2} (o) } } \\
\tiny \bold{@DarkShadow7083 }
Everything is tiny! Tiny girl! Prove the identity given above-​

Answers

Answered by Oreki
6

\text{\bf To prove, }\\\text{\: \: \: $(1 + \cot \theta + \tan \theta)( \sin \theta - \cos \theta) = \dfrac{ \sec \theta}{\csc^2 \theta} - \dfrac{\csc \theta}{\sec^2 \theta}$}

\text{\bf Solution}

  \textsf{Taking,}\\\texttt{\: \: LHS = }\text{$(1 + \cot \theta + \tan \theta) (\sin \theta - \cos \theta)$}\\\\\texttt{\hspace{3em} = $\sin \theta - \cos \theta + \cot \theta \sin \theta  - \cot \theta \cos \theta + \tan \theta \sin \theta - \tan \theta \cos \theta$}\\\\\texttt{\hspace{3em} = $\sin \theta - \cos \theta + \dfrac{\cos \theta}{\sin \theta} \cdot \sin \theta - \cot \theta \cos \theta  + \tan \theta \sin \theta - \dfrac{\sin \theta}{\cos \theta} \cdot \cos \theta$}\\

               \texttt{ = $\sin \theta - \cos \theta + \cos \theta - \cot \theta \cos \theta  + \tan \theta \sin \theta - \sin \theta$}\\\\\texttt{ = $\sin \theta \tan \theta - \cot \theta \cos \theta$}\\\\\texttt{ = $\dfrac{\sin \theta}{\cos \theta} \cdot \dfrac{1}{\csc \theta} + \dfrac{\cos \theta}{\sin \theta} \cdot \dfrac{1}{\sec \theta} $}\\\\\texttt{ = $\dfrac{1}{\csc \theta} \cdot \dfrac{1}{\csc \theta} \cdot \sec \theta + \dfrac{1}{\sec \theta} \cdot \dfrac{1}{\sec \theta} \cdot \csc \theta$}\\

               \texttt{ = $\dfrac{\sec \theta}{\csc^2 \theta} - \dfrac{\csc \theta}{\sec^2 \theta}$}\\\\\texttt{ = R.H.S}

       \textsf{Hence, proved.}

Answered by WildCat7083
7

 \huge \underline \mathfrak{⇛to \: prove} \\  \\ {(1 + \cot(o) + \tan(o) )( \sin(o) - \cos(o) ) = \frac{ \sec(o) }{cosec {}^{2}o } - \frac{cosec (o)}{ \sec {}^{2} (o) } } \\ \\ \\ ⇛\huge \underline \mathfrak{proof} \\  \\ LHS: (1 +  \frac{ \cos(o) }{ \sin(o) }  +  \frac{ \cos(o) }{ \sin(o) })( \sin(o)  -  \cos(o) ) \\  \\  ⇛\frac{( \sin(o)  \cos(o)  +  \cos {}^{2} (o) +  \sin {}^{2} (o) ) ( \sin(o) -  \cos(o) ) }{ \sin(o) \cos(o)  }  \\  \\  ⇛\frac{ \sin {}^{3} (o)  -  \cos {}^{3} (o) }{ \sin(o)  \cos(o) }  \\  \\ ⇛ \frac{ \sin {}^{2} (o) }{ \cos(o) }  -  \frac{ \cos {}^{2} (o) }{ \sin(o) }  \\  \\ ⇛ \frac{ \sec(o) }{ \csc {}^{2} (o) }  -  \frac{ \csc(o) }{ \sec {}^{2} (o) }  \\  \\ \:  \:  \:  \:  \:  \:  \: \huge \bold{@WildCat7083 } \\

Similar questions