Math, asked by ShaniaRoy, 1 year ago

\tt\bold{9^{x-1}=3 \times \sqrt{3^{2x+1}}} has the solution ?

1. 3
2. 2
3. 7/2
4. None Of These

Please, Need Urgently
Mathematics !!
[BOARD] CBSE​

Answers

Answered by BrainlyWriter
89

\Large\bold{\underline{\underline{Answer:-}}}

\sf\Large( \frac{7}{2})

\rule{200}{4} \bf\small\bold{\underline{\underline{Step-By-Step\:Explanation:-}}}</p><p>

\sf9^{(x-1)}=3\times\sqrt{3^{(2x+1)}}

\sf\:Squaring\:on\:both\:the \:sides

\sf(9^{(x-1)})^2=(3\times\sqrt{3^{(2x+1)}})^2

\sf\:Apply\:the\:Rule\:(a^m)^n =a^{(m\times n)}\:on\:LHS

\implies\sf(9^{(2x-2)})=(3)^2\times3^{(2x+1)}

\sf\:Apply\:the\:Rule\:a^m\times b^n=a^{(m+n)}\:on\:RHS

\implies\sf(3^2)^{(2x-2)}=3^{(2x+1+2)} \implies \sf (3^{(4x-4)})=3^{(2x+3)}

\sf\:Now\:Bases\:of\:LHS\:and\:RHS\:are\:equal\:hence\:equate\:the\:powers

\implies\sf(4x-4)=(2x+3)

\implies\sf 4x-2x=3+4

\implies\sf 2x = 7

\implies\sf x = (\frac{7}{2})

Hence, Option \sf( \frac{7}{2}) is correct answer

Answered by ram5556
38

Answer:

for \: showing \: full \: answer \: click \: on \: photo.

Hope it helps you .

Attachments:
Similar questions