Math, asked by sautik56, 2 months ago

[/tex]\tt \dfrac{9 \pi}{8} - \dfrac{9}{4} sin^{ - 1} \dfrac{1}{3} = \dfrac{9}{4} sin^{ - 1} \dfrac{2 \sqrt{2}}{3}[tex]
Give full explanation of this question.

⚠️CAUTION : Don't spam otherwise your answer will be reported. ​

Answers

Answered by Anonymous
142

To Prove

  • \tt \dfrac{9 \pi}{8} - \dfrac{9}{4} sin^{ - 1} \dfrac{1}{3} = \dfrac{9}{4} sin^{ - 1} \dfrac{2 \sqrt{2}}{3}

Proof

  • METHOD : 1

From L.H.S

\implies \tt  \dfrac{9 \pi}{8}  -  \dfrac{9}{4} sin^{ - 1} \dfrac{1}{3}   \\  \\ \implies \tt  \dfrac{9}{4}   \left[ \dfrac{\pi}{2} - sin^{ - 1} \dfrac{1}{3} \right] \\ \\ { \underline{ \bf{ Convert \: sin \: into \: cos \: by \: the \: Pythagoras \: theorem}}} \\  \\ \implies \tt  \dfrac{9}{4}   \left[ \dfrac{\pi}{2} - cos^{ - 1} \:  \dfrac{2 \sqrt{2} }{3} \right]  \\  \\ { \boxed{ \boxed{ \bf{sin^{ - 1}x +  cos^{ - 1}x =  \frac{\pi}{2}}}}} \\  \\ \implies \tt \dfrac{9}{4} sin^{ - 1} \dfrac{2 \sqrt{2}}{3} \qquad  {  \boxed{\boxed{ \bf{sin^{ - 1}x =  \frac{\pi}{2} - cos^{ - 1}x}}}}

\: ━━━━━━━━━━━━━━━━━━━━━━━━

  • METHOD : 2

\implies \tt  \dfrac{9 \pi}{8}  -  \dfrac{9}{4} sin^{ - 1} \dfrac{1}{3}    = \dfrac{9}{4} sin^{ - 1} \dfrac{2 \sqrt{2}}{3} \\  \\

\implies \tt   \dfrac{9}{4} sin^{ - 1} \dfrac{1}{3} +  \dfrac{9}{4} sin^{ - 1} \dfrac{2 \sqrt{2}}{3} = \dfrac{9 \pi}{8} \\  \\

\underline{ \bf{From \: L.H.S, \: take \:  \frac{9}{4}  \:  \: as \: a \: common}} \\  \\

\implies \tt \frac{9}{4}  \left[sin^{ - 1} \dfrac{1}{3} + sin^{ - 1} \dfrac{2 \sqrt{2}}{3} \right] \\  \\

\boxed{ \boxed{ \bf{sin^{ - 1}x + sin^{ - 1}y =sin^{ - 1}(x \sqrt{1 - y^{2}} +  y \sqrt{1 - x^{2}}})}} \\  \\

\implies \tt \frac{9}{4}  \left[sin^{ - 1} \dfrac{2 \sqrt{2} }{3} \sqrt{1 -  \left( \frac{1}{3} \right)^2}  +  \frac{1}{3}  \sqrt{1 -   \left(\frac{2 \sqrt{2} }{3} \right)^2 } \:  \right] \\  \\

\implies \tt \frac{9}{4}  \left[sin^{ - 1} \dfrac{2 \sqrt{2} }{3} \sqrt{1 - \frac{1}{9}}  +  \frac{1}{3}  \sqrt{1 -   \frac{8}{9} } \:  \right] \\  \\

\implies \tt \frac{9}{4}  \left[sin^{ - 1} \dfrac{2 \sqrt{2} }{3} \sqrt{ \frac{9 - 1}{9}}  +  \frac{1}{3}  \sqrt{ \frac{9 - 8}{9} } \:  \right] \\  \\

\implies \tt \frac{9}{4}  \left[sin^{ - 1} \dfrac{2 \sqrt{2} }{3}  \times \dfrac{2 \sqrt{2} }{3} +  \frac{1}{3}  \times \frac{1}{3} \:\right] \\  \\

 \implies \tt \frac{9}{4}  \left[sin^{ - 1}  \left(\dfrac{8}{9} +  \frac{1}{9} \right)\:\right] \\  \\

\implies \tt \frac{9}{4}  \left[sin^{ - 1}  \left(\dfrac{9}{9} \right)\:\right] \\  \\

 \implies \tt \frac{9}{4}  \left[sin^{ - 1}  \left( 1 \right)\:\right] \\  \\

\implies \tt \frac{9}{4}  \left[sin^{ - 1}  \left( sin \:  \frac{\pi}{2}  \right)\:\right]  \\  \\

\implies \tt \frac{9}{4}  \times  \frac{\pi}{2}  =  \frac{9\pi}{8}

\: ━━━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Supercalifragilisticexpialidocious! :-)
Anonymous: Thank you! w(°o°)w
Answered by Despair
21

Step-by-step explanation:

To prove: \tt \dfrac{9 \pi}{8} - \dfrac{9}{4} sin^{ - 1} \dfrac{1}{3} = \dfrac{9}{4} sin^{ - 1} \dfrac{2 \sqrt{2}}{3}

\tt \dfrac{9 \pi}{8} - \dfrac{9}{4} sin^{ - 1} \dfrac{1}{3} =  \dfrac{9 }{4} \left(\dfrac{\pi}{2} -  sin^{ - 1} \dfrac{1}{3} \right)

Use the identity \tt sin^{-1}x + cos^{-1}x = \dfrac{\pi}{2}

\tt LHS =  \dfrac{9 }{4} cos^{-1} \dfrac13

Now use \tt cos^{-1}x = sin^{-1} \sqrt{1-x^2}

\tt LHS =  \dfrac{9 }{4} sin^{-1} \sqrt{1-\left(\dfrac13 \right)^2

\tt =  \dfrac{9 }{4} sin^{-1} \sqrt{1-\dfrac19}

\tt =  \dfrac{9 }{4} sin^{-1} \sqrt{\dfrac89}

\tt =  \dfrac{9 }{4} sin^{-1} \dfrac{2\sqrt{2}}{3}

\tt = RHS

Similar questions