Math, asked by Thatsomeone, 8 months ago

\tt For\:positive\:integer\:{n}_{1},{n}_{2} \:the\:value\:of\:expression \\ \\ \tt {(1+i)}^{{n}_{1}} + {(1+{i}^{3})}^{{n}_{1}} + {(1+{i}^{5})}^{{n}_{2}} + {(1+{i}^{7})}^{{n}_{2}} \\ \\ \tt Where\:i = \sqrt{-1} \:is\:a\:real\:number\:if\:and\:only\:if \\ \\ \tt a. {n}_{1} = {n}_{2} + 1 \\ \tt b. {n}_{1} = {n}_{2} - 1 \\ \tt {n}_{1} = {n}_{2} \\ \tt {n}_{1}>0 , {n}_{2}>0

Answers

Answered by AVENGERS789456
2

Answer:

hope it helps you.....

Attachments:
Answered by Anonymous
2

Answer:

\tt For\:positive\:integer\:{n}_{1},{n}_{2} \:the\:value\:of\:expression \\ \\ \tt {(1+i)}^{{n}_{1}} + {(1+{i}^{3})}^{{n}_{1}} + {(1+{i}^{5})}^{{n}_{2}} + {(1+{i}^{7})}^{{n}_{2}} \\ \\ \tt Where\:i = \sqrt{-1} \:is\:a\:real\:number\:if\:and\:only\:if \\ \\ \tt a. {n}_{1} = {n}_{2} + 1 \\ \tt b. {n}_{1} = {n}_{2} - 1 \\ \tt {n}_{1} = {n}_{2} \\ \tt {n}_{1}>0 , {n}_{2}>0

Step-by-step explanation:

SIS OR BRO PLZ THANKS ANSWERS OF MY TOP FOLLOWING ID PLZ

Similar questions