Math, asked by llSᴡᴇᴇᴛHᴏɴᴇʏll, 2 days ago


\tt\huge\underline{Question}:-
 \\

\sf \: Find \:  the \:  roots  \: of  \: the\: following \\\sf \: quadratic \: equations \:  by  \: using \\  \sf\underline{QUADRATIC \:  FORMULA \: }method.
 \\

a) 7x² + 6x + 1 = 0

b) 3x² - 10x + 8 = 0​

Answers

Answered by Anonymous
6

Answer:

refer to the attachment

next question you can try

mark as brainlest

Attachments:
Answered by ᴍσσɳʅιɠԋƚ
6

Solution :

a) 7x² + 6x + 1 = 0

The given equation is

 \sf{} \implies \:  7x^{2}+ 6x + 1 = 0

Comparing it with ax² + bx + c = 0, we get,

a = 7 , b = 6 , c = 1

By finding Discriminant;

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \star  \boxed{\sf{ \bold{D = {b}^{2}  - 4ac}}} \star

By substituting values;

 \sf{} \rightarrow \: D =(6 {)}^{2}  - 4(7)(1) \\  \\ \sf{} \rightarrow \: D =36 - 28(1) \\  \\ \sf{} \rightarrow \: D =36 - 28 \\  \\ \sf{} \rightarrow \: D =8 \\  \\ \sf{} \rightarrow \:  \sqrt{D}  = \sqrt{8}  \\  \\ \sf{} \rightarrow \:  \sqrt{D}  = 2\sqrt{2}

Therfore, since the D = 8 which implies that,

 \implies \: \sf{} D \:  > 0

Hence, the roots are real and different.

Now let us find the roots using Quadratic Formula ;

 \:  \:  \:  \:  \:  \:   \boxed{\sf{} { \bold{x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }}}

or

 \:  \:  \:  \:  \:  \:   \boxed{\sf{} { \bold{x =  \frac{ - b \pm \sqrt{D} }{2a} }}}

By putting values

 \sf{} \implies \: x =  \dfrac{ - 6 \pm \:  2\sqrt{2} }{2(7)}  \\  \\ \sf{} \implies \: x =  \dfrac{ - 6  \pm 2\sqrt{2}}{14}  \\  \\ \sf{} \implies \: x =  \dfrac{ - 6 + 2\sqrt{2}}{14}  \:  \:  \:  \:  \dfrac{ - 6 - 2\sqrt{2}}{14}  \\  \\ \sf{} \implies \: x =  \dfrac{ - 3+2\sqrt{2}}{7}  \:  \:  \:  \dfrac{ 3-2\sqrt{2}}{7}  \\  \\ \sf{} \implies \: x =  \dfrac{3-2\sqrt{2}}{  7}   \:  \:  \:  \: \dfrac{ 3-2\sqrt{2}}{7}

Therefore, roots are 3-22/7 and 3-22/7

b) 3x² - 10x + 8 = 0

The given equation is

 \sf{} \implies \: 3x^{2} - 10x + 8 = 0

Comparing it with ax² + bx + c = 0, we get,

a = 3, b = -10 , c = 8

By finding Discriminant;

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \star  \boxed{\sf{ \bold{D = {b}^{2}  - 4ac}}} \star

By substituting values;

 \rightarrow \sf{} \: D =( - 10 {)}^{2}  - 4(3)(8) \\  \\ \rightarrow \sf{} \: D =100 - 12(8) \\  \\ \rightarrow \sf{} \: D =100 - 96 \\  \\ \rightarrow \sf{} \: D =4 \\  \\ \rightarrow \sf{} \:  \sqrt{} D = \sqrt{4}  \\  \\ \rightarrow \sf{} \:  \sqrt{} D =2

Therfore, since the D = 2 which implies that,

 \implies \: \sf{} D \:  > 0

Hence, the roots are real and different.

Now let us find the roots using Quadratic Formula ;

 \:  \:  \:  \:  \:  \:   \boxed{\sf{} { \bold{x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }}}

or

 \:  \:  \:  \:  \:  \:   \boxed{\sf{} { \bold{x =  \frac{ - b \pm \sqrt{D} }{2a} }}}

By putting values ;

 \sf{} \implies \: x =  \dfrac{ - 10 \pm \: 2}{2(3)}  \\  \\  \sf{} \implies \: x =  \dfrac{ - 10 \pm \: 2}{6}  \\  \\ \sf{} \implies \: x =    \dfrac{ - 10 + 2}{6} \:  \:  \:   \dfrac{ - 10 - 2}{6 }  \\  \\  \sf{} \implies \: x =  \dfrac{ - 8}{2}  \:  \:  \:  \dfrac{ - 12}{6}  \\  \\  \sf{} \implies \: x =  \dfrac{ - 4}{1}  \:  \:  \:   \dfrac{  - 2}{1}

Therefore, roots are -4 and -2.

Similar questions