Math, asked by roneei, 17 days ago


\tt{ I   ​​_{​n}   =  \: \int\limits_{​}^{​}​  {tan}^{x}   ​\,​ dx }  \\ \tt{I   ​​_{​n} =   \frac{ {(tan \: x)}^{n - 1} }{n - 1}  - I   ​​_{​n - 2} } \:  \: (prove \: it)

Answers

Answered by Okhey
3

\large{\underline{\underline{ \bf{⎆Correct\:Question:-}}}}

❐ Given :

 \tt{ I _{n} = \: \int\limits_{}^{} {tan}^{n} x\, dx }

❐ To prove :

\tt{I _{n} = \frac{ {(tan \: x)}^{n - 1} }{n - 1} - I _{n - 2} } \: \:

\large{\underline{\underline{ \bf{☂ Solution:-}}}}

\longmapsto \: \tt{ I _{n} = \: \int\limits {tan}^{x} \, dx }

\longmapsto \tt{ I _{n} =  {\int\limits(tan}^{n - 2} . {tan}^{2} x)dx}

 \longmapsto \tt{ I _{n} =  {\int\limits(tan}^{n - 2}x . ({sec}^{2}x - 1 ))dx}

\longmapsto\: \tt{ I _{n} =  {\int\limits(tan}^{n - 2} x \: {sec}^{2}x -  {tan}^{n - 2}x  )dx}

 \longmapsto \tt{ I _{n} =  {\int\limits(tan}^{n - 2} x \: {sec}^{2}x )\: dx -  \int\limits{(tan}^{n - 2}x  )dx}

➥ \:  \tt{Put , \:tan\:x\:=\:t}

\tt{After\:differentiating\: both\:the\: sides\:,\:we \: get - }

 ➥ \: \tt{sec²x\:dx=dt}

\therefore\tt{ I _{n} \:  =  \int\limits( {t}^{n - 2})dt -   I _{n - 2}}

\tt{Integrate\:both\:the\:sides - }

 \longmapsto \: \tt{ I _{n} \:  =  (  \frac{{t}^{n - 1}}{n - 1} ) -   I _{n - 2}}

\tt{Put\:the\: value\:of \: 't' \::}

 \:✰ \: \tt{ I _{n} \:  =  (  \frac{{tan}^{n - 1}}{n - 1} ) -   I _{n - 2}}

  • Hence proved .
Similar questions