Math, asked by NITESH761, 4 days ago


\tt If \: \: \dfrac{1}{a+1} + \dfrac{1}{b+1} + \dfrac{1}{c + 1} = 2
 \tt then, \: \: a^2 + b^2 + c^2 = ?

Answers

Answered by XxitzZBrainlyStarxX
5

Given:-

\sf \large If \: \: \dfrac{1}{a+1} + \dfrac{1}{b+1} + \dfrac{1}{c + 1} = 2

To Find:-

 \sf \large a { }^{2}  + b {}^{2}  + c {}^{2}  = ?

Solution:-

This is a cyclic function. This will held when a = b = c.

 \sf \large So, ⇒  \frac{3}{1 + a}  = 2.

 \sf \large ⇒a = b = c =  \frac{1}{2}

 \sf \large Hence, a {}^{2}  + b {}^{2}  + c {}^{2}  =( \frac{1}{2} ) {}^{2}  + ( \frac{1}{2} ) {}^{2}  + ( \frac{1}{2} ) {}^{2}  =  \frac{3}{4}

Answer:-

 \sf \large \red{ a {}^{2}  + b {}^{2}  + c {}^{2}  =  \frac{3}{4} .}

Hope you have satisfied.

Similar questions