Math, asked by brainlyofficial11, 4 months ago


{ \tt \: if \tan \theta \:  =  \frac{1}{ \sqrt{2} }} \:  \: , \\   \\ { \tt \: find \: the \: value \: of \: }    \\   { \tt \: \frac{ \cosec^{2} \theta-  { \sec}^{2} \theta  }{ \cosec^{2} \theta +  { \cot}^{2} \theta } }
⚠︎ ᴅᴏɴ'ᴛ sᴘᴀᴍ

Answers

Answered by Ataraxia
24

Correct Question :-

\sf If \ tan \theta = \dfrac{1}{\sqrt{2}},

Find the value of :-

\sf \dfrac{cosec^2 \theta-sec^2 \theta }{cosec^2 \theta+cot^2 \theta}

Solution :-

We know :-

\sf cot \theta = \dfrac{1}{tan \theta }

\sf\therefore cot \theta = \sqrt{2}

\bullet \bf \ cosec^2 \theta = 1+cot^2 \theta  \\\\\bullet \ sec^2 \theta = 1+tan^2 \theta

\longrightarrow \sf \dfrac{cosec^2 \theta-sec^2 \theta}{cosec^2 \theta+cot^2 \theta} \\\\\longrightarrow \dfrac{1+cot^2 \theta -( 1+tan^2 \theta) }{1+cot^2 \theta +cot^2 \theta} \\\\ \longrightarrow \dfrac{1+cot^2 \theta -1 - tan^2 \theta}{1+cot^2 \theta + cot^2 \theta} \\\\\longrightarrow \dfrac{cot^2 \theta - tan^2 \theta}{1+2 cot^2 \theta }

Substitute the values of \sf tan \theta and \sf cot \theta,

\longrightarrow \sf \dfrac{ (\sqrt{2} ) ^2 - \left( \dfrac{1}{\sqrt{2}} \right)^2}{1+ 2 \times  (\sqrt{2})^2} \\\\ \longrightarrow \dfrac{2- \dfrac{1}{2}}{1+ 2\times 2 } \\\\ \longrightarrow\dfrac{\dfrac{4-1}{2}}{1+4} \\\\ \longrightarrow \dfrac{\dfrac{3}{2}}{5} \\\\ \longrightarrow  \dfrac{3}{2} \times \dfrac{1}{5} \\\\ \longrightarrow  \bf \dfrac{3}{10}


brainlyofficial11: thanks :)
Ataraxia: Welcome! :D
drbchandrashekarshet: thank you
Answered by Anonymous
43

Step-by-step explanation:

Given :

  • \sf \: \tan \theta \: = \frac{1}{ \sqrt{2} } \: \: \\

To Find :

  • \sf \: \frac{ \cosec^{2} \theta- { \sec}^{2} \theta }{ \cosec^{2} \theta + { \cot}^{2} \theta } \:  \\

Solution :

According to the Question :

\sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ \cosec^{2} \theta- { \sec}^{2} \theta }{ \cosec^{2} \theta + { \cot}^{2} \theta } \:  \\

\\  \\ \sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1  + {cot}^{2}  - 1 -  {tan}^{2}  }{1 +   {cot}^{2}   +  {cot}^{2} } \\\\\\

\sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ {cot}^{2} -  {tan}^{2}  }{2 {cot}^{2} + 1 }  \\  \\  \\ \sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{2 -  \frac{1}{2} }{2  \times 2 + 1}  \\  \\  \\  \sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{ \frac{4 - 1}{2} }{5}  \\  \\  \\ \sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{ \frac{3}{2} }{5}  \\  \\  \\ \sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{3}{2}  \times  \frac{1}{5}  \\  \\  \\ \sf : \implies\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{3}{10}

_______________________

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions