Math, asked by CherryBloosom, 9 months ago

\tt \: If \: \: \: x + \frac{1}{x} = 20 \: \: find \: \: {x}^{2} + \frac{1}{ {x}^{2} }

Answers

Answered by Mounikamaddula
29

Answer:

Answer:

  • 398

Given:

The equation is,

x+1/x=1

To find:

+1/=?

Formula used:

As we know that,

(  {a + b)}^{2} =  {a}^{2}  +  {b}^{2}  + 2ab

Solution:

The given equation is,

x +  \frac{1}{x} = 20

Squaring on both sides,

+1/+2x×1/x=400

+1/+2=400

+1/=398

Answered by ShrinkingViolet
49

\sf{\underline{\boxed{\red{\large{\bold{Question}}}}}}

  • \sf \: If \: \: \: x + \frac{1}{x} = 20 \: \: find \: \: {x}^{2} + \frac{1}{ {x}^{2} }

\sf{\underline{\boxed{\red{\large{\bold{Solution}}}}}}

  • \sf x + \frac{1}{x} = 20

\bf\underline{Squaring \ both \ sides:}

\sf{(x + \dfrac{1}{x})}^{2}  =  {(20)}^{2}

Identify: \sf{(a+b)^2=a^2+b^2+2ab}

 \implies \:  \sf {x}^{2}  +  { (\frac{1}{x} })^{2}  + \:  \:  2 \times x \times  \frac{1}{x}  = 400 \\  \\  \implies \sf {x}^{2}  +  \frac{1}{x^2}  + 2 = 400 \\  \\  \implies \sf {x}^{2}  +   \frac{1}{x^2}  = 400 - 2 \\  \\

\implies{\underline {\boxed{\tt{x^2}{\dfrac{1}{x^2}=398}}}}

━━━━━━━━━━━━━━━━━━━━

Similar questions