Math, asked by mddilshad11ab, 1 month ago

\tt\large\purple{\underbrace{Question:-}}
If S denotes the area of curved surface of right circular cone of height h and semivertical angle (alpha) then S equal to = ?​

Answers

Answered by brainlyanswerer83
62

Hey Mate:-

Given Question:-

→ If S denotes the area of the curved surface of a right circular cone of height h and semivertical angle (alpha) then S equal to = ?​

To Find:-

→ S equal to?

Solution:-

⇒  s = πrl ,

⇒  r = radius

⇒  l  = slant height

⇒  h = Height

⇒ Now , \frac{r}{h} = tan α ⇒ r = h tan α

⇒  l =\sqrt{h^2 + r^2}

⇒    = \sqrt{h^2 + r^2  tan ^2 a}

⇒   = \sqrt{h^2(1 + tan^2a)}

⇒   = \sqrt{h^2 sec^2 a}  = h sec a

⇒  ∴ s = π .h tan α. h sec α = πh² sec α tan α.

----------------------------------------------------  

Attachments:

mddilshad11ab: Great¶
Answered by shadowsabers03
34

Consider a cylindrical element of radius r and slant width dl at a vertical distance of x units and slant distance of l units along the curved surface from the vertex of the right circular cone of height h and semivertical angle α, as shown in the figure.

The curved surface area of the element is,

\small\text{$\longrightarrow\sf{dA=2\pi r\ dl\quad\dots(1)}$}

But in the right triangle ABC,

\small\text{$\longrightarrow\sf{\sin\alpha=\dfrac{r}{l}}$}

\small\text{$\longrightarrow\sf{r=l\sin\alpha}$}

Then (1) becomes,

\small\text{$\longrightarrow\sf{dA=2\pi l\sin\alpha\ dl}$}

Now the total curved surface area of the cone is,

\small\text{$\displaystyle\longrightarrow\sf{A=\int\limits_0^L2\pi l\sin\alpha\ dl}$}

\small\text{$\displaystyle\longrightarrow\sf{A=2\pi\sin\alpha\int\limits_0^Ll\ dl}$}

\small\text{$\displaystyle\longrightarrow\sf{A=\pi\sin\alpha\left[l^2\right]_0^L}$}

\small\text{$\displaystyle\longrightarrow\sf{A=\pi L^2\sin\alpha\quad\dots(2)}$}

But in the right triangle ADE,

\small\text{$\longrightarrow\sf{\cos\alpha=\dfrac{h}{L}}$}

\small\text{$\longrightarrow\sf{L=\dfrac{h}{\cos\alpha}}$}

Then (2) becomes,

\small\text{$\displaystyle\longrightarrow\sf{A=\pi\cdot\dfrac{h^2}{\cos^2\alpha}\cdot\sin\alpha}$}

\small\text{$\displaystyle\longrightarrow\sf{A=\pi h^2\cdot\dfrac{1}{\cos\alpha}\cdot\dfrac{\sin\alpha}{\cos\alpha}}$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{\sf{A=\pi h^2\sec\alpha\tan\alpha}}}$}

Attachments:

mddilshad11ab: Always Awesome and wonderful ans bhai
Similar questions