Math, asked by Deku12, 8 hours ago


 \tt{\large{\underbrace{ \red{Question:-}}}}

\\\sf{Prove \: that:-}
 \\  \rm{ \rightarrow{ \sqrt{ \dfrac{1 - sin \theta}{1 + sin \theta} }  = sec \theta  - tan \theta}}
 \\  \rm{ \rightarrow{ \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} }  = cot \theta + cosec \theta}}

Answers

Answered by VishnuPriya2801
141

Answer:-

We have to prove:

 1) \:  \:  \:  \:  \sqrt{ \dfrac{1 -  \sin( \theta) }{1 +  \sin( \theta) } }  =  \sec( \theta)  -  \tan( \theta)

Rationalising the denominator in LHS we get ,

 \implies \sf\sqrt{ \dfrac{1 -  \sin( \theta) }{1 +  \sin( \theta) } \times  \dfrac{1 -  \sin( \theta) }{1 -  \sin (\theta)}  }  =  \sec( \theta)  -  \tan( \theta)  \\  \\  \\ \implies \sf \sqrt{ \frac{ \big(1 -  \sin( \theta) \big) ^{2} }{ \big(1 +  \sin( \theta) \big) \big(1  -  \sin( \theta) \big)} }  = \sec( \theta)  -  \tan( \theta)

using (a + b)(a - b) = - in LHS we get;

 \implies \sf \:  \sqrt{ \dfrac{ \big(1 -  \sin( \theta) \big) ^{2}  }{ {1} -  { \sin }^{2} ( \theta) } }  = \sec( \theta)  -  \tan( \theta)  \\

Using the identity cos² θ = 1 - sin² θ we get,

 \implies \sf \:  \sqrt{ \frac{ \big(1 -  \sin( \theta) \big) ^{2} }{ { \cos}^{2} ( \theta)} }  = \sec( \theta)  -  \tan( \theta) \\  \\  \\ \implies \sf \:   \sqrt{ \bigg( \frac{1 -  \sin( \theta)}{ \cos( \theta)}  \bigg) ^ { 2}}  =\sec( \theta)  -  \tan( \theta) \\  \\  \\  \implies \sf\frac{1 -  \sin( \theta)}{ \cos( \theta)}  = \sec( \theta)  -  \tan( \theta) \\  \\  \\  \implies \sf\frac{1  }{\cos( \theta)}  -  \frac{ \sin( \theta)}{ \cos (\theta)}  = \sec( \theta)  -  \tan( \theta)

Using 1/cos θ = sec θ and sin θ/cos θ = tan θ we get,

 \implies  \sec( \theta)  -  \tan( \theta)  = \sec( \theta)  -  \tan( \theta)

Hence, Proved.

__________________________________

2) \:  \:  \:  \:  \sqrt{ \dfrac{ \sec( \theta)  + 1}{ \sec( \theta)  - 1} }  =  \cot( \theta)  +  \csc( \theta)

Again rationalising the denominator we get,

 \implies \sf \: \sqrt{ \dfrac{ \sec( \theta)  + 1  }{ \sec( \theta)  - 1}  \times  \dfrac{\sec( \theta)  + 1}{\sec( \theta)  + 1} }  =  \cot( \theta)  +  \csc( \theta)  \\  \\  \\ \implies \sf \: \sqrt{  \frac{{ \big( \sec( \theta)  + 1 \big)}^{2}}{ { \sec }^{2}( \theta) - 1 }   }  = \cot( \theta)  +  \csc( \theta)

using tan² θ = sec² θ - 1 in LHS we get,

 \implies \sf\sqrt{  \frac{{ \big( \sec( \theta)  + 1 \big)}^{2}}{ { \tan }^{2}( \theta)  }   }  = \cot( \theta)  +  \csc( \theta) \\  \\  \\ \implies \sf \sqrt{ \bigg( \frac{ \sec( \theta) + 1 }{ \tan (\theta)} \bigg)  ^{2}   }  = \cot( \theta)  +  \csc( \theta) \\  \\  \\ \:  \implies \sf \frac{ \sec( \theta) + 1 }{ \tan (\theta)} = \cot( \theta)  +  \csc( \theta) \\  \\  \\  \implies \sf \:  \frac{ \sec( \theta) }{ \tan( \theta)}  +  \frac{1}{ \tan (\theta)}  = \cot( \theta)  +  \csc( \theta)

Using sec θ = 1/cos θ ; tan θ = sin θ/cos θ and 1/tan θ = cot θ in LHS we get,

 \implies \sf \:  \dfrac{ \frac{1}{  \cancel{\cos( \theta) }} }{ \frac{ \sin( \theta) }{  \cancel{\cos (\theta)}} }  +  \cot( \theta)  =  \csc( \theta)  +  \cot( \theta)  \\  \\  \\  \implies \sf \frac{1}{ \sin( \theta) }  +  \cot( \theta)  =  \csc( \theta)  +  \cot( \theta)

Using cosec θ = 1/sin θ we get,

 \implies \csc( \theta)  +  \cot( \theta) = \csc( \theta)  +  \cot( \theta)

Hence, Proved.


mddilshad11ab: perfect explaination ✔️
VishnuPriya2801: Thanks bro !! :)
Answered by OtakuSama
211

 \dag{ \large{ \underline{ \underline{ \sf{ \pmb{Question}}}}}}

 \\\sf{Prove \: that:-}

\\ \rm{ \bold{ \rightarrow{ \sqrt{ \dfrac{1 - sin \theta}{1 + sin \theta} } = sec \theta - tan \theta}}}

\\ \rm{ \bold{ \rightarrow{ \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} } = cot \theta + cosec \theta}}}

 \\  \dag{  \large{\underline{ \underline{ \sf{ \pmb{Required \: answers}}}}}}

\dag{ \underline{ \underline{ \sf{Question \: (1)}}}}

\\ \rm{ \bold{ \rightarrow{ \sqrt{ \dfrac{1 - sin \theta}{1 + sin \theta} } = sec \theta - tan \theta}}}

 \dag{ \underline{ \underline{ \sf{Formulas \: applied}}}}

 \\  \sf{ \rightarrow{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}

 \sf{ \rightarrow{1 -  {sin}^{2}  \theta =  {cos}^{2}  \theta}} \\  \\

 \dag{ \underline{ \underline{ \sf{Solution}}}}

L. H. S. =>

\\ \rm{ \bold{ \sqrt{ \dfrac{1 - sin \theta}{1 + sin \theta}}}}

  \\  \sf{ \implies{  \sqrt{ \frac{(1 - sin \theta)(1  -  sin \theta)}{(1 + sin \theta)(1 + sin \theta)}}}}

  \\  \sf{ \implies{ \sqrt{ \dfrac{(1 - sin \theta) {}^{2} }{ {1}^{2}  -   {sin}^{2}  \theta}}}}

 \\  \sf{ \implies{ \sqrt{ \dfrac{(1 - sin \theta) {}^{2} }{  {cos}^{2}   \theta}}}}

   \\  \sf{ \implies{ \frac{1 - sin \theta}{cos \theta}}}

 \\  \sf{ \implies{ \frac{1}{cos \theta}  -  \frac{sin \theta}{cos \theta}}}

 \\  \sf{ \implies{ \bold{ \red{sec \theta  - tan \theta}}}} \:  \:  \:  \:  \:  \:  \:  \boxed{ \rm{ \because{ \frac{1}{cos \theta = sec \theta} \: and \:  \frac{sin \theta}{cos \theta} }  =  tan \theta}}

=> R. H. S.

Hence, proved!!

 \dag{ \underline{ \underline{ \sf{Question \: (2)}}}}

\\\rm{ \bold{ \rightarrow{ \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} } = cot \theta + cosec \theta}}}

\dag{ \underline{ \underline{ \sf{Formulas \: applied}}}}

 \\  \sf{ \rightarrow{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}

 \sf{ \rightarrow{  {sec}^{2}  \theta + 1 =  {tan}^{2}  \theta}}

\dag{ \underline{ \underline{ \sf{Solution}}}}

L. H. S. =>

\\ \rm{ \bold{ \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1}}}}

 \\  \sf{ \implies{ \sqrt{ \frac{(sec \theta + 1)(sec \theta + 1)}{(sec \theta - 1)(sec \theta  + 1)}}}}

 \\ \sf{ \implies{ \sqrt{ \frac{(sec \theta + 1) {}^{2} }{ {sec}^{2}  \theta + 1}}}}

 \\ \sf{ \implies{ \sqrt{ \frac{(sec \theta + 1) {}^{2} }{ {tan}^{2} \theta }}}}

 \\  \sf{ \implies{ \frac{sec \theta + 1}{tan \theta}}}

 \\ \sf{ \implies{ \frac{sec \theta}{tan \theta}  +  \frac{1}{tan \theta}}}

  \\  \sf{ \implies{ \dfrac{ \dfrac{1}{cos \theta} }{ \dfrac{sin \theta}{cos \theta} }  + cot \theta}} \:  \:  \:  \:  \:  \:  \:  \boxed{ \because{ \rm{sec \theta =  \frac{1}{cos \theta}  \: and \:  \frac{1}{tan \theta}  =  cot \theta }}}

 \\  \sf{ \implies{ \frac{1}{cos \theta}  \times  \frac{cos \theta}{sin \theta}  + cot \theta}}

 \\  \sf{ \implies{ \bold{ \red{cosec \theta + cot \theta}}}} \:  \:  \:  \:  \:  \:  \:  \boxed{ \because{ \rm{ \frac{1}{sin \theta} = cosec \theta }}}

=> R. H. S.

Hence, proved!


mddilshad11ab: perfect explaination ✔️
Similar questions