CBSE BOARD X, asked by Niya6788, 4 months ago

\tt \:  \longrightarrow \: \dfrac{x + 3}{x - 2}  - \dfrac{1 - x}{x}  = \dfrac{17}{4}

Find x​

Answers

Answered by Anonymous
12

To Find :-

  • Value of "x"

Solution :-

\sf:\implies \: \dfrac{x + 3}{x - 2}  - \dfrac{1 - x}{x}  = \dfrac{17}{4} \\\\

\sf:\implies \: \dfrac{(x + 3)x - (x - 2)(1 - x)}{(x - 2)x}  = \dfrac{17}{4} \\\\

\sf:\implies  \: \dfrac{ {x}^{2} + 3x - (x -  {x}^{2} - 2 + 2x)  }{ {x}^{2}  - 2x}  = \dfrac{17}{4} \\\\

\sf:\implies  \: \dfrac{ {x}^{2} +  3x - 3x + 2 +  {x}^{2}  }{ {x}^{2}  - 2x}  = \dfrac{17}{4} \\\\

\sf:\implies  \: \dfrac{2 {x}^{2}  + 2}{ {x}^{2}  - 2x}  = \dfrac{17}{4}\\\\

\sf:\implies \:  {8x}^{2}  + 8 =  {17x}^{2}  - 34x\\\\

\sf:\implies \:  {9x}^{2}  - 34x - 8 = 0\\\\

\sf:\implies \:  {9x}^{2}  - 36x + 2x - 8 = 0\\\\

\sf:\implies  \: 9x(x - 4) + 2(x - 4) = 0\\\\

\sf:\implies \: (x - 4)(9x + 2) = 0

\sf\implies \: \boxed{ \red {\sf\:  x \:  = 4 \: OR\: x \:  =  \:  - \: \dfrac{2}{9}  }}\\\\

____________________________

Similar questions