Math, asked by Itzintellectual, 19 days ago

\tt\orange{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4}\times\frac{4}{3}÷\frac{4}{12} }}

Answers

Answered by piyushmeena5678
4

\tt\red{Hey\:Mate}

\tt\blue{Here\:is\:ur\: answer}

\fbox{Important\: concepts}••

a). \bf\green{\underline{BODMAS}}::

BODMAS is the application used for simplifying the mathematical problems by using the sequence of BRACKET,OF,DIVISION, MULTIPLICATION, ADDITION and SUBTRACTION.

b). \bf\green{\underline{RECIPROCAL}}::

RECIPROCAL is the reverse of a fraction or a number. Reverse can be obtained by multiplying \frac{1}{number} to the number.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\bf\pink{\underline{Given}}::

\tt\orange{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4}\times\frac{4}{3}÷\frac{4}{12} }}

{\boxed \tt\red{Apply \:the\: BODMAS\:rule}}

\fbox{BODMAS}::

\bf\red{B} = Bracket

\bf\red{O} = Of

\bf\red{D} = Division

\bf\red{M} = Multiplication

\bf\red{A} = Addition

\bf\red{S} = Subtraction

Here, there are no brackets and of.

So, here we will apply DMAS rule.

\tt\blue{DMAS}::

\bf\red{D} = Division

\bf\red{M} = Multiplication

\bf\red{A} = Addition

\bf\red{S} = Subtraction

First we will do division then multiplication and then addition and subtraction respectively.

\tt\blue{\implies}{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4}\times\frac{4}{3}÷\frac{4}{12} }}

The fraction after divide sign will get reversed.

\tt\blue{\implies}{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4}\times\frac{4}{3}\times \frac{12}{4} }}

\tt\blue{\implies}{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4}\times\frac{12}{12} }}

\tt\blue{\implies}{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4}\times\frac{1}{1} }}

Here, 1 can be excluded as it returns dame value after adding and subtracting.

\tt\blue{\implies}{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4} }}

\tt\blue{\implies}{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+\frac{3}{4}\times     4}}

\tt\blue{\implies}{\boxed{\frac{2}{3}+\frac{5}{6}-\frac{7}{8}+3 }}

Now, we will take the \tt\blue{LCM}.

LCM of 3,6 and 8 by taking common multiples.

Multiples of 3: 3 6 9 12 15 18 21 \fbox{8}

Multiples of 6: 6 12 18 \fbox{24}

Multiples of 8: 8 16 \fbox{24}

So, the LCM is \tt\red{24}.

Now we will make \fbox{EQUIVALENT\: FRACTION}.

\frac{2}{3}= \frac{2\times 8}{3 \times 8}\implies \frac{16{24}

\frac{5}{6}= \frac{5 \times 4}{6 \times 4}\implies \frac{20}{24}

\frac{7}{8}= \frac{7 \times 3}{8 \times 3}\implies \frac{21}{24}

\frac{3}{1}= \frac{3 \times 24}{1 \times 24}\implies \frac{72}{24}

\tt\blue{\implies}{\boxed{\frac{16}{24}+\frac{20}{24}-\frac{21}{24}+\frac{72}{24} }}

\tt\blue{\implies}{\boxed{\frac{16+20-21+72}{24}}}

\tt\blue{\implies}{\boxed{\frac{108-21}{24}}}

\tt\blue{\implies}{\boxed{\frac{87}{24}}}

\tt\green{\longmapsto}{\boxed{\frac{87}{24}}}

Thus , answer of following question is \huge\mathfrak\red{\frac{87}{24}}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\mathfrak\green{\tt\blue{{\underline{\tt\purple{\underline{ \tt \green{ { \boxed{{{ \tt \pink{ρเყµรɦ}}}}}}}}}}}}

Answered by kiranbhanot639
0

Answer:

 \frac{87}{27} \:  \:  \:  is \: the \: answer \: of \: the \: given \: question.

Similar questions