Math, asked by TheBrainlyKing1, 5 months ago

\tt\pink{4b^2+\dfrac{1}{b^2}=2} \\ \sf\blue{8b^3+\dfrac{1}{b^3}}=\red?

Answers

Answered by telex
230

Questions :-

 \: \tt\pink{4b^2+\dfrac{1}{b^2}=2} \\  \: \sf\blue{8b^3+\dfrac{1}{b^3}=}\red?

____________________

Solution :-

Given Information :-

 \: \tt\pink{4b^2+\dfrac{1}{b^2}=2} \\

To Find :-

 \: \sf\blue{8b^3+\dfrac{1}{b^3}=}\red?

Calculation :-

 \sf :  \implies (2b +  \frac{1}{b} )^{2}  =  {4b}^{2}  +  \frac{1}{ {b}^{2} }  + 4

 \sf :  \implies  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}   + 2ab

 \sf :  \implies (2b +  \frac{1}{b} )^{2}  = 6

 \sf :  \implies (2b +  \frac{1}{b} ) =  \red{ ±\sqrt{6} }

 \sf :  \implies(a + b)^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)

 \sf  : \implies(2b +  \frac{1}{b} )^{2}  =  {8b}^{3}  +  { \frac{1}{b ^{3} }} + 6(2b +  \frac{1}{b} )

CASE 1 :-

Substituting the value of

 \sf :  \implies (2b +  \frac{1}{b} ) =  \sqrt{6}

 \sf  : \implies  { (\sqrt{6} )}^{3}  = (8b)^{3}  +  \frac{1}{b^{3} }  + 6( \sqrt{6} )

 \sf  : \implies 6 \sqrt{6}  =  {8b}^{3}  +  \frac{1}{b^{3} }  + 6 \sqrt{6}

 \sf  : \implies {8b}^{3}  +  \frac{1}{b^{3}  }  = 0

CASE 2 :-

Even, if you take the value of,

 \sf :  \implies(2b  + \frac{1}{b} ) \: as \:  -  \sqrt{6}

 \sf :  \implies  - 6 \sqrt{6}  = 8b^{3}  +  \frac{1}{b^{3} }  - 6 \sqrt{6}

 \sf  : \implies  {8b}^{3}  +  \frac{1}{ {b}^{3} }  = 0

In both the cases, the answer will be 0.

___________________

Final Answer :-

 \sf \red{±  \sqrt{6} }

____________________

Note :-

Scroll from right to left to see the whole solution.

Answered by saurabhkumar0044
1

Answer:

square 6 is your answer thank your

Similar questions