Math, asked by talpadadilip417, 19 days ago

\tt\pink{Evaluate\displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)\tt d x}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by mathdude500
49

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x

We know that

\boxed{\tt{  \:  {cot}^{ - 1}x =  {tan}^{ - 1} \frac{1}{x} \: }} \\

So, using this, we get

\rm \:  =  \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x +  {x}^{2} } \bigg] d x

\rm \:  =  \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x +  {x}^{2} } \bigg] d x

\rm \:  =  \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x

We know

\boxed{\tt{  \:  {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\

So, using this identity, we get

\rm \:  =  \: \displaystyle \int_{0}^{1} \rm \:  [{tan}^{ - 1}(1 - x) + {tan}^{ - 1}x] \: d x

\rm \:  =  \: \displaystyle \int_{0}^{1} \rm \:  {tan}^{ - 1}(1 - x) \: dx + \displaystyle \int_{0}^{1} \rm \:{tan}^{ - 1}x\: d x \\

We know,

\boxed{\tt{  \:  \: \displaystyle \int_{0}^{a} \rm \:f(x) \: dx \:  =  \: \displaystyle \int_{0}^{a} \rm \:f(a - x) \: dx \: }} \\

So, using this property, we get

\rm \:  =  \: \displaystyle \int_{0}^{1} \rm \:  {tan}^{ - 1}[1 - (1 - x)] \: dx + \displaystyle \int_{0}^{1} \rm \:{tan}^{ - 1}x\: d x \\

\rm \:  =  \: \displaystyle \int_{0}^{1} \rm \:  {tan}^{ - 1}[1 - 1 +  x] \: dx + \displaystyle \int_{0}^{1} \rm \:{tan}^{ - 1}x\: d x \\

\rm \:  =  \: \displaystyle \int_{0}^{1} \rm \:  {tan}^{ - 1}x \: dx + \displaystyle \int_{0}^{1} \rm \:{tan}^{ - 1}x\: d x \\

\rm \:  =  \: \displaystyle \int_{0}^{1} \rm \:  2{tan}^{ - 1}x \: dx  \\

Now, Consider

\rm \: \displaystyle \int \rm \: 2{tan}^{ - 1}x \: dx

Using Integration by parts, we get

\rm \:  =  \: {tan}^{ - 1}x\displaystyle \int\rm \: 2 \: dx \:  -  \: \displaystyle \int\rm \: \bigg[\dfrac{d}{dx}{tan}^{ - 1}x \: \displaystyle \int\rm \: 2 \: dx \bigg]dx

\rm \:  =  \: {tan}^{ - 1}x \: (2x) - \displaystyle \int\rm \:  \frac{1}{ {x}^{2}  + 1} \times 2x \: dx

\rm \:  =  \: {tan}^{ - 1}x \: (2x) - \displaystyle \int\rm \:  \frac{2x}{ {x}^{2}  + 1} \: dx

We know,

\boxed{\tt{ \displaystyle \int\rm \:  \frac{f'(x)}{f(x)} \: dx \:  =  \: log |f(x)|  + c \: }}

So, using this result, we get

\rm \:  =  \: 2x{tan}^{ - 1}x - log | {x}^{2} + 1 |

So,

\rm \:  =  \: \displaystyle \int_{0}^{1} \rm \:  2{tan}^{ - 1}x \: dx  \\

\rm \:  =  \: \bigg |2x{tan}^{ - 1}x - log | {x}^{2} + 1 |\bigg |_{0}^{1}

\rm \:  =  \: 2{tan}^{ - 1}1 - log |2|  - 0 + 0

\rm \:  =  \: 2 \times \dfrac{\pi}{4}  - log |2|

\rm \:  =  \: \dfrac{\pi}{2}  - log 2

Hence,

\boxed{\tt{ \rm \:\displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)\tt d x  =  \: \dfrac{\pi}{2}  - log 2 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \:  \: \displaystyle \int_{a}^{b} \rm \:f(x) \: dx \:  =   \:  - \: \displaystyle \int_{b}^{a} \rm \:f(x) \: dx \: }} \\

\boxed{\tt{  \:  \: \displaystyle \int_{a}^{b} \rm \:f(x) \: dx \:  =   \: \displaystyle \int_{a}^{b} \rm \:f(y) \: dy \: }} \\

\boxed{\tt{  \:  \: \displaystyle \int_{a}^{b} \rm \:f(x) \: dx \:  =   \: \displaystyle \int_{a}^{b} \rm \:f(a + b - x) \: dx \: }} \\

\boxed{\tt{  \:  \: \displaystyle \int_{ - a}^{a} \rm \:f(x) \: dx \:  = 0 \:  \: if \: f( - x) \:   =  \:  -  \: f(x)}} \\

\boxed{\tt{  \:  \: \displaystyle \int_{ - a}^{a} \rm \:f(x) \: dx \:  =2 \displaystyle \int_{0}^{a} \rm \:f(x)dx \: \:  \:  if \: f( - x) \:   = f(x)}} \\

\boxed{\tt{  \:  \: \displaystyle \int_{0}^{2a} \rm \:f(x) \: dx \:  = 0 \:  \: if \: f(2a - x) \:   =  \:  -  \: f(x)}} \\

Integration by parts Formula

\boxed{\tt{ \rm \: \displaystyle \int\rm \: uv \: dx =  \: u\displaystyle \int\rm \: v \: dx \:  -  \: \displaystyle \int\rm \: \bigg[\dfrac{d}{dx}u \: \displaystyle \int\rm \: v \: dx \bigg]dx}} \\

Answered by XxitzZBrainlyStarxX
19

Question:-

\sf \large{Evaluate:- \:  \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x}.

Given:-

 \sf \large{ \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x}.

Solution:-

 \sf \large  \int ^{1} _{0}(1 - x + x {}^{2} )dx

 \sf \large  =  \int^{1} _{0}tan {}^{ - 1}  \bigg \{ \frac{(1 - x) + x}{1 - x(1 - x)} \bigg \} dx

 \sf \large =  \int  ^{1} _{0}tan {}^{ - 1} (1 - x)dx +  \int ^{1} _{0}tan {}^{ - 1}  \: x \: dx

 \sf \large =  -  \bigg[(1 - x)tan {}^{ - 1}(1 - x) -  \frac{1}{2}log \big \{1 + (1 - x) {}^{2}   \big \} \bigg  ]^{1} _{0} +  \bigg \{x \: tan {}^{ - 1} x -  \frac{1}{2} log(1 + x {}^{2} ) \bigg \} ^{1} _{0}

 \sf \large =  \frac{\pi}{2}  - log2.

Answer:-

\sf \large {{\int^{1}_{0} cot {}^{ - 1} (1 - x + x {}^{2})dx \sf \large  \: =  \frac{\pi}{2}  - log2 .}}

Hope you have satisfied.

Similar questions