Math, asked by talpadadilip417, 24 days ago

\tt{\pmb {if  \quad y^{2}=a\left(b^{2}-x^{2}\right) \quad show\quad that     x y \dfrac{d^{2} y}{d x^{2}}+x\left(\dfrac{d y}{d x}\right)^{2}=y \dfrac{d y}{d x}}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \: y^{2}=a\bigg(b^{2}-x^{2}\bigg) \\

On differentiating both sides w .r. t. x, we get

\rm \:\dfrac{d}{dx} y^{2}=\dfrac{d}{dx}a\bigg(b^{2}-x^{2}\bigg) \\

We know,

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

and

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}k \: f(x) \:  =  \: k \: \dfrac{d}{dx}f(x) \:  \: }} \\

So, on using these results, we get

\rm \: 2y\dfrac{dy}{dx} = a\dfrac{d}{dx}\bigg( {b}^{2} -  {x}^{2}\bigg) \\

\rm \: 2y\dfrac{dy}{dx} = a(0 - 2x) \\

\rm \: 2y\dfrac{dy}{dx} =  - 2ax \\

On dividing both sides by 2, we get

\rm \: y\dfrac{dy}{dx} =  - ax -  -  - (1) \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}\bigg(y\dfrac{dy}{dx}\bigg) =  - a\dfrac{d}{dx}x \\

\rm \: y\dfrac{d}{dx}\bigg(\dfrac{dy}{dx}\bigg) + \dfrac{dy}{dx}  \times \dfrac{d}{dx}y=  - a \\

\rm \: y\dfrac{ {d}^{2} y}{d {x}^{2} } +  {\bigg(\dfrac{dy}{dx}\bigg)}^{2}  =  - a \\

Multiply both sides by x, we get

\rm \: xy\dfrac{ {d}^{2} y}{d {x}^{2} } +  x{\bigg(\dfrac{dy}{dx}\bigg)}^{2}  =  - ax \\

On substituting the value of ax from equation (1), we get

\rm \: xy\dfrac{ {d}^{2} y}{d {x}^{2} } +  x{\bigg(\dfrac{dy}{dx}\bigg)}^{2}  = y\dfrac{dy}{dx} \\

Hence,

\rm\implies \:\boxed{\pmb{  \:\rm \: xy\dfrac{ {d}^{2} y}{d {x}^{2} } +  x{\bigg(\dfrac{dy}{dx}\bigg)}^{2}  = y\dfrac{dy}{dx} \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions