Math, asked by ΙΙïƚȥΑαɾყαɳΙΙ, 11 hours ago

\tt{Question}

Attachments:

Answers

Answered by Itzintellectual
4

Step-by-step explanation:

EXPLANATION.

\sf \implies a + \dfrac{1}{a + 1} = b + \dfrac{1}{b - 1} - 2

\sf \implies a - b + 2 \ne 0

As we know that,

We can write equation as,

\sf \implies a + \dfrac{1}{a + 1} = (b - 2 )+ \dfrac{1}{b - 1}

\sf \implies a - (b - 2) = \dfrac{1}{b - 1} - \dfrac{1}{a + 1}

\sf \implies a - b + 2 = \dfrac{(a + 1) - (b - 1)}{(b - 1)(a +b)}

\sf \implies a - b + 2 = \dfrac{a + 1 - b + 1}{ab + b - a - 1}

\sf \implies a - b + 2 = \dfrac{a - b + 2}{ab - a + b - 1}

\sf \implies 1 = \dfrac{1}{ab - a + b - 1}

\sf \implies ab - a + b - 1 = 1

\sf \implies ab - a + b = 1 + 1

\sf \implies \bf\red{{\underline}\tt\blue{{\boxed}\bf\green{ab - a + b = 2}}}

Option [3] is correct answer

Please drop thanks.

Answered by CuteDollyBaby
1

(ʘᴗʘ)Hey

Soln:-

First, adding 3x2 + 5xy + 7y2 + 3 and 2x2– 4xy – 3y2 + 7 we have,

= 3x2 + 5xy + 7y2 + 3 + 2x2– 4xy – 3y2 + 7 = 5x2 + xy + 4y2 + 10

Now,

Subtracting 5x2 + xy + 4y2 + 10 from 9x2– 8xy + 11y2

= (9x2– 8xy + 11y2) – (5x2 + xy + 4y2 + 10)

= 9x2– 8xy + 11y2– 5x2– xy – 4y2– 10

= 4x2– 9xy + 7y2– 10

Similar questions