Math, asked by antrasharma97, 8 months ago

\tt{QUESTION}

triangle ABC has vertices A (-4,1) , B (2,-1),C (1,K) then no of possible values of K is so that triangle ABC is isosceles
(a) 2
(b) 1
(c) 5
(d) 6

\shortrightarrow
spam sirf un questions pe kro jo question already spammed h is lia yha pe spam mt krna ​

Attachments:

Answers

Answered by Anonymous
79

Given :

ABC is a isosceles triangle with vertices -

A ( - 4 , 1 )

A ( - 4 , 1 ) B ( 2 , - 1 )

A ( - 4 , 1 ) B ( 2 , - 1 ) C ( 1 , k )

● To find :

Number of all possible values of k .

● Answer :

option ( c ) \longrightarrow 5

● Solution:

Triangle ABC is isosceles , it means any of the two sides are equal.

there may be 3 cases .

Case 1 : AB = BC

Case 2 : BC = AC

Case 3 : AC = AB

Case 1 :-

when AB = BC

 \sqrt{ {(2 + 4)}^{2} +  {( - 2)}^{2}  }  =  \sqrt{ {( - 1)}^{2} +  {(k + 1)}^{2}  }

36 + 4 = 1 +  {k}^{2}  + 1 + 2k

 =  {k}^{2}  + 2k - 38

( By using quadratic formula )

k =  \frac{ - 2 +  -  \sqrt{4 - 4 \times 38 \times 1} }{2}

 =  \frac{ - 2 +  -  \sqrt{4 + 152} }{2}

 =  \frac{ - 2 +  -  \sqrt{15} }{2}

Here , in case 1 , two values of k are possible , that are -

 \frac{ - 2 +  \sqrt{15} }{2}

and

 \frac{ - 2 -  \sqrt{15} }{2}

Case 2 :-

when BC = AC

 \sqrt{ {( - 1)}^{2} +  {(k + 1)}^{2}  }  =  \sqrt{ {(5)}^{2}  +  {( k- 1)}^{2} }

1 +  {k}^{2}  + 1 + 2k = 25 +  {k}^{2}  + 1 - 2k

4k = 24

k = 6

Here, in case 2 , only one value of k is possible that is 6 .

Case 3 :-

when AC = AB

 \sqrt{ {(5)}^{2} +  {(k - 1)}^{2}  }  =  \sqrt{ {(6)}^{2}  +  {( - 2)}^{2} }

25  +  {k}^{2}  + 1 - 2k = 36 + 4

 {k}^{2}  - 2k - 14 = 0

after solving ,

k =  \frac{2 +  -  \sqrt{60} }{2}

k = 1 +  -  \sqrt{15}

Here , in case 3 , two values of k are possible that are -

1 +  \sqrt{15}

and

1 -  \sqrt{15}

Total number of possible values = number of possible values in Case 1 + number of possible values in case 2 + number of possible values in case 3

=> 2 + 1 + 2 = 5

Hence , option ( c ) is correct .

__________________________________

Hope it will definitely help you .

___________________________________

Answered by gayatrikumari99sl
2

Answer:

There are 5 possible value for k .

Step-by-step explanation:

Explanation :

Given , ABC is a triangle which has vertices,

A (-4,1) , B(2,-1) and (1,k).

So, if a triangle is an isosceles than its any two side be equal to each other .

Such as , AB = BC or BC = AC or AC = AB

So , there are three case .

Therefore , by using distance formula we first find AB , BC and AC

Step1:

AB = \sqrt{(2+4)^{2} +(-1-1)^{2} }  = \sqrt{36+4} = \sqrt{40}

BC = \sqrt{(1-2)^{2} +(k+1)^{2} } = \sqrt{k^{2}+2k+2 }

AC = \sqrt{(1+5)^{2} +(k-1)^{2} }  = \sqrt{k^{2} -2k+24}

Now , in case 1 which is AB = BC

\sqrt{40} = \sqrt{k^{2} +2k+2}  

Squaring both side  we get ,

40 = k^{2} +2k +2

⇒38 = k^{2} +2kk^{2} +2k +38 = 0

k = \frac{-2+-\sqrt{4+4.38.1} }{2}  = \frac{-2+\sqrt{15} }{2} and \frac{-2-\sqrt{15} }{2}

There are two value of k

Step2:

Case 2 : BC = AC

\sqrt{k^{2}+2k+2 } = \sqrt{k^{2} -2k+24}

Squaring  both side we get ,

k^{2}+2k+2 = k^{2}  -2k+24

⇒4k = 24 ⇒k = 6

Only , one value of k is possible ,

Step3:

Case 3: AC = AB

\sqrt{5^{2} +(k+1)} = \sqrt{40}

Squaring both side

25 +k^{2} +1-2k = 40

k^{2}  - 2k -14 =0

Solving this equation ,

k = 1+\sqrt{15} , 1-\sqrt{15}

In this case there are two values of k

So ,total number of possible values of k

case (i) +case (ii)+case (iii) = 2+1+2 = 5

Final answer :

Hence ,there are  5 possible value for k and the correct answer is option (c) .

Attachments:
Similar questions