Math, asked by llSᴡᴇᴇᴛHᴏɴᴇʏll, 1 month ago


\tt\red{Please  \: help  \: me: - }

Attachments:

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
46

Given :

In ∆ PQR ,

PQR = 90° and QS perpendicular on PR , Where S lies on PR .

To Prove :

PR² = PQ² + QR²

Proof :

In ∆ PQS and ∆ PQR

∠PSQ = ∠PQR = 90°

∠QPS = RPQ (Common)

∴ ∆ PQS ≅ PRQ (By AA similarity)

\large\sf{{\red{ \frac{PQ}{PR} \:  =  \:   \frac{SR}{PQ} }}} \:  \:  \:  \: {\rm{{\purple{(Cross \:  \:  Multiplying)}}}}

PQ² = SR × PR ----- (equation 1)

_______________________

In ∆ QSR and ∆ PQR

∠QSR = ∠PQR = 90°

∠QRS = ∠QRP (Common)

∠QRS ≅ ∠PQR (By AA similarity)

\large\sf{{\orange{ \frac{QR}{PR} \:  =  \:   \frac{SR}{QR} }}} \:  \:  \:  \: {\rm{{\blue{(Cross \:  \:  Multiplying)}}}}

QR² = PR × SR ----- (equation 2)

_______________________

Adding the relations obtained in equation (1) and equation (2).

We get ,

PQ² + QR² = SR × PR × PR × SR

PR (PS + SR)

PR × PR

PR²

Hence , PR² = PQ² + QR²

Answered by sharbomoymukherjee00
1

Answer:

Given :

In ∆ PQR ,

PQR = 90° and QS perpendicular on PR , Where S lies on PR .

To Prove :

PR² = PQ² + QR²

Proof :

In ∆ PQS and ∆ PQR

∠PSQ = ∠PQR = 90°

∠QPS = RPQ (Common)

∴ ∆ PQS ≅ PRQ (By AA similarity)

\large\sf{{\red{ \frac{PQ}{PR} \: = \: \frac{SR}{PQ} }}} \: \: \: \: {\rm{{\purple{(Cross \: \: Multiplying)}}}}

PR

PQ

=

PQ

SR

(CrossMultiplying)

PQ² = SR × PR ----- (equation 1)

_______________________

In ∆ QSR and ∆ PQR

∠QSR = ∠PQR = 90°

∠QRS = ∠QRP (Common)

∴ ∠QRS ≅ ∠PQR (By AA similarity)

\large\sf{{\orange{ \frac{QR}{PR} \: = \: \frac{SR}{QR} }}} \: \: \: \: {\rm{{\blue{(Cross \: \: Multiplying)}}}}

PR

QR

=

QR

SR

(CrossMultiplying)

QR² = PR × SR ----- (equation 2)

_______________________

Adding the relations obtained in equation (1) and equation (2).

We get ,

PQ² + QR² = SR × PR × PR × SR

PR (PS + SR)

PR × PR

PR²

Hence , PR² = PQ² + QR²

Similar questions