Math, asked by Anonymous, 3 months ago


 \tt \red S \bf implif \tt \red y \:  = (2a - 3b + 3c)^{2}  - (2a - 3b + 4c) ^{2}

Hello everyone,
Please Help me ☹️✅

Hope You people would keep my hope.
Don't spam please ☹️✅​

Answers

Answered by MrImpeccable
4

ANSWER:

To Simplify:

  • (2a - 3b + 3c)² - (2a - 3b + 4c)²

Solution:

We are given that,

⇒ (2a - 3b + 3c)² - (2a - 3b + 4c)²

We know that,

⇒ (x + y + z)² = x² + y² + z² + 2(xy + yz + zx)

Here in first term,

⇒ x = 2a, y = (-3b) and z = 3c

And in second term,

⇒ x = 2a, y = (-3b) and z = 4c

So,

⇒ (2a - 3b + 3c)² - (2a - 3b + 4c)²

⇒ [(2a)² + (-3b)² + (3c)² + 2((2a)(-3b) + (-3b)(3c) + (3c)(2a))] - [(2a)² + (-3b)² + (4c)² + 2((2a)(-3b) + (-3b)(4c) + (4c)(2a))]

⇒ [4a² + 9b² + 9c² + 2((-6ab) + (-9bc) + (6ca))] - [4a² + 9b² + 16c² + 2((-6ab) + (-12bc) + (8ca))]

So,

⇒ [4a² + 9b² + 9c² + 2(-6ab - 9bc + 6ca)] - [4a² + 9b² + 16c² + 2(-6ab - 12bc + 8ca)]

⇒ [4a² + 9b² + 9c² - 12ab - 18bc + 12ca] - [4a² + 9b² + 16c² - 12ab - 24bc + 16ca]

Opening the bracket,

⇒ 4a² + 9b² + 9c² - 12ab - 18bc + 12ca - 4a² - 9b² - 16c² + 12ab + 24bc - 16ca

Grouping like terms together,

⇒ (4a² - 4a²) + (9b² - 9b²) + (9c² - 16c²) + (-12ab + 12ab) + (-18bc + 24bc) + (12ca - 16ca)

So,

⇒ (0) + (0) + (-7c²) + (0) + (6bc) + (-4ca)

Hence,

⇒ - 7c² + 6bc - 4ca

Taking c common,

⇒ c(-7c + 6b - 4a)

Therefore,

⇒ (2a - 3b + 3c)² - (2a - 3b + 4c)² = c(-7c + 6b - 4a)

OR

⇒ (2a - 3b + 3c)² - (2a - 3b + 4c)² = c(-4a + 6b - 7c)

Formula Used:

  • (x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
Answered by emma3006
1

Answer:

(2a - 3b + 3c)² - (2a - 3b + 4c)²  =  -7c²-4ac+6bc

Step-by-step explanation:

Here,

Let

(2a - 3b + 3c) = x

and,

(2a - 3b + 4c) = y

We know that,

x²-y² = (x+y) (x-y)

Substituting the values,

   (2a - 3b + 3c)² - (2a - 3b + 4c)²

=  {(2a-3b+3c) + (2a-3b+4c)} {(2a-3b+3c) - (2a-3b+4c)}

Solving the brackets,

=  {2a-3b+3c+2a-3b+4c} {2a-3b+3c-2a+3b-4c}

Rearranging like terms,

=  (2a+2a-3b-3b+3c+4c) (2a-2a-3b+3b+3c-4c)

=  (4a-6b+7c)(-c)

=  -c(4a-6b+7c)

Multiplying the terms,

=  -4ac+6bc-7c²

Rearranging the terms,

=  -7c²-4ac+6bc

Hence,

(2a - 3b + 3c)² - (2a - 3b + 4c)²  =  -7c²-4ac+6bc

Similar questions