Math, asked by sajan6491, 11 hours ago

 \tt \red{The  \: number  \: of  \: real}  \\ \tt \color{blue}{ solution  \: of \:  the  \: equation} \\  \tiny\tt \pink{\sin^{ - 1} \bigg( \sum \limits_{i = 1}^{ \infty } {x}^{i + 1} - x \sum \limits_{i = 1}^{ \infty } ( \frac{x}{2} {)}^{i} \bigg) = \frac{\pi}{2} - {cos}^{ - 1} \bigg( \sum \limits _{ i = 1 }^{\infty} ( \frac{ - x}{2} ) ^{i} - \sum\limits_{ i = 1 }^{\infty} ( - x {)}^{i} \bigg)} \\ \sf \color{green}{ lying \: in \: the \: interval \: \bigg( - \frac{1}{2}, \frac{1}{2} \bigg) \: is}

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given inverse Trigonometric equation is

\rm :\longmapsto\:\sf{\sin^{ - 1} \bigg( \sum \limits_{i = 1}^{ \infty } {x}^{i + 1} - x \sum \limits_{i = 1}^{ \infty } ( \frac{x}{2} {)}^{i} \bigg) = \dfrac{\pi}{2} - {cos}^{ - 1} \bigg( \sum \limits _{ i = 1 }^{\infty} ( \frac{ - x}{2} ) ^{i} - \sum\limits_{ i = 1 }^{\infty} ( - x {)}^{i} \bigg)}

can be further rewritten as

\rm :\longmapsto\:\sf{\sin^{ - 1} \bigg( \sum \limits_{i = 1}^{ \infty } {x}^{i + 1} - x \sum \limits_{i = 1}^{ \infty } ( \frac{x}{2} {)}^{i} \bigg) + {cos}^{ - 1} \bigg( \sum \limits _{ i = 1 }^{\infty} ( \frac{ - x}{2} ) ^{i} - \sum\limits_{ i = 1 }^{\infty} ( - x {)}^{i} \bigg)} = \dfrac{\pi}{2}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{  {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2}}}} \\

So, using this identity, we get

\rm :\longmapsto\:\sf{ \sum \limits_{i = 1}^{ \infty } {x}^{i + 1} - x \sum \limits_{i = 1}^{ \infty } ( \frac{x}{2} {)}^{i}=  \sum \limits _{ i = 1 }^{\infty} ( \frac{ - x}{2} ) ^{i} - \sum\limits_{ i = 1 }^{\infty} ( - x {)}^{i}}

Now, Consider

\rm :\longmapsto\:\sf{ \sum \limits_{i = 1}^{ \infty } {x}^{i + 1}}

\rm \:  =  \:  {x}^{2} +  {x}^{3}  +  {x}^{4} +  -  -  -  \infty

Its an infinite GP series, so using sum of infinite GP series, we get

\rm \:  =  \: \dfrac{ {x}^{2} }{1 - x}

Now, Consider

\rm :\longmapsto\:x \sum \limits_{i = 1}^{ \infty } \bigg( \dfrac{x}{2}\bigg)^{i}

\rm \:  =  \: x\bigg[\dfrac{x}{2} + \dfrac{ {x}^{2} }{4}  + \dfrac{ {x}^{3} }{8  }  +  -  -  -  \infty  \bigg]

Its an infinite GP series, So using sum of infinite GP series, we get

\rm \:  =  \: x \times \dfrac{\dfrac{x}{2} }{1 - \dfrac{x}{2} }

\rm \:  =  \: \dfrac{ {x}^{2} }{2 - x}

Now, Consider

\rm :\longmapsto\: \sum \limits_{i = 1}^{ \infty } \bigg( -  \dfrac{x}{2}\bigg)^{i}

\rm \:  =  \:  - \dfrac{x}{2} + \dfrac{ {x}^{2} }{4}  -  \dfrac{ {x}^{3} }{8  }  +  -  -  -  \infty

\rm \:  =  \:  \dfrac{ - \dfrac{x}{2} }{1 +  \dfrac{x}{2} }

\rm \:  =  \: \dfrac{ - x}{2 + x}

Now, Consider

\rm :\longmapsto\:\sf{ \sum \limits_{i = 1}^{ \infty } {( - x)}^{i}}

\rm \:  =  \: - x +   {x}^{2} - {x}^{3}  +  {x}^{4} +  -  -  -  \infty

Its an infinite GP series, so using sum of infinite GP series, we get

\rm \:  =  \: \dfrac{ - x}{1 + x}

So, on substituting these values in above expression, we get

\rm :\longmapsto\:\dfrac{ {x}^{2} }{1 - x}  - \dfrac{ {x}^{2} }{2 - x}  = \dfrac{x}{1 + x}  - \dfrac{x}{2 + x}

\rm :\longmapsto\:\dfrac{ {x}^{2} }{1 - x}  - \dfrac{ {x}^{2} }{2 - x}  -  \dfrac{x}{1 + x}  +  \dfrac{x}{2 + x}  = 0

\rm :\longmapsto\:x\bigg[\dfrac{ {x}}{1 - x}  - \dfrac{ {x}}{2 - x}  -  \dfrac{1}{1 + x}  +  \dfrac{1}{2 + x}\bigg]  = 0

\bf\implies \:x = 0

and

\rm :\longmapsto\:\dfrac{ {x}}{1 - x}  - \dfrac{ {x}}{2 - x}  -  \dfrac{1}{1 + x}  +  \dfrac{1}{2 + x} = 0

\rm :\longmapsto\:\dfrac{ {x}}{1 - x}    -  \dfrac{1}{1 + x}  = \dfrac{x}{2 - x}  -  \dfrac{1}{2 + x}

\rm :\longmapsto\:\dfrac{ {x(1 + x) - 1 + x}}{1 -  {x}^{2} }  = \dfrac{x(2 + x) - 2 + x}{4 -  {x}^{2} }

\rm :\longmapsto\:\dfrac{ {x +  {x}^{2}  - 1 + x}}{1 -  {x}^{2} }  = \dfrac{2x +  {x}^{2}  - 2 + x}{4 -  {x}^{2} }

\rm :\longmapsto\:\dfrac{ {{x}^{2}  - 1 + 2x}}{1 -  {x}^{2} }  = \dfrac{{x}^{2} + 3x  - 2}{4 -  {x}^{2} }

\rm :\longmapsto\:( {x}^{2} + 2x - 1)(4 -  {x}^{2}) = (1 -  {x}^{2})( {x}^{2} + 3x - 2)

\rm :\longmapsto\: {4x}^{2} + 8x - 4 -  {x}^{4} -  {2x}^{3} +  {x}^{2} =  {x}^{2} + 3x - 2 -  {x}^{4} -  {3x}^{3} +  {2x}^{2}

\rm :\longmapsto\: {x}^{3} +  {2x}^{2} + 5x - 2 = 0

Now, its a cubic equation, to find the nature of root of it, we use the concept of increasing and decreasing.

Let assume that

\rm :\longmapsto\: p(x) = {x}^{3} +  {2x}^{2} + 5x - 2

So,

\rm :\longmapsto\: p'(x) = 3{x}^{2} +  4x + 5

Now, Its a quadratic equation, whose a > 0 and Discriminant, D = 16 - 60 = - 44 < 0

\bf\implies \:p'(x) &gt; 0

\bf\implies \:p(x)  \: is \: increasing \: function

\bf\implies \:p(x)  \: intersects \:x \:  -  \: axis \: only \: once

As, we know that every cubic equation has atleast one real root.

Now,

\rm :\longmapsto\:p(0) = 0 + 0 + 0 - 2 =  - 2

and

\rm :\longmapsto\:p(0.5) = 0.625 + 0.5 + 2.5 - 2 = 1.125

\bf\implies \:p(x) \: has \: one \: root \: between \: \bigg(0, \: \dfrac{1}{2}  \bigg)

\bf\implies \:Number \: of \: real \: roots \: are \: 2


amansharma264: Perfect
Answered by Itzintellectual
7

Step-by-step explanation:

Hey mate

Here is the answer

EXPLANATION.

{\displaystyle {\begin{aligned}\tan x&amp;{}=\sum _{n=0}^{\infty }{\frac {U_{2n+1}}{(2n+1)!}}x^{2n+1}\\[8mu]&amp;{}=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}\left(2^{2n}-1\right)B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&amp;{}=x+{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}+{\frac {17}{315}}x^{7}+\cdots ,\qquad {\text{for }}|x|&lt;{\frac {\pi }{2}}.\end{aligned}}}{\displaystyle {\begin{aligned}\tan x&amp;{}=\sum _{n=0}^{\infty }{\frac {U_{2n+1}}{(2n+1)!}}x^{2n+1}\\[8mu]&amp;{}=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}\left(2^{2n}-1\right)B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&amp;{}=x+{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}+{\frac {17}{315}}x^{7}+\cdots ,\qquad {\text{for }}|x|&lt;{\frac {\pi }{2}}.\end{aligned}}}

{\displaystyle {\begin{aligned}\sec x&amp;=\sum _{n=0}^{\infty }{\frac {U_{2n}}{(2n)!}}x^{2n}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}\\[5mu]&amp;=1+{\frac {1}{2}}x^{2}+{\frac {5}{24}}x^{4}+{\frac {61}{720}}x^{6}+\cdots ,\qquad {\text{for }}|x|&lt;{\frac {\pi }{2}}.\end{aligned}}}

{\displaystyle {\begin{aligned}\cot x&amp;=\sum _{n=0}^{\infty }{\frac {(-1)^{n}2^{2n}B_{2n}}{(2n)!}}x^{2n-1}\\[5mu]&amp;=x^{-1}-{\frac {1}{3}}x-{\frac {1}{45}}x^{3}-{\frac {2}{945}}x^{5}-\cdots ,\qquad {\text{for }}0&lt;|x|&lt;\pi .\end{aligned}}}

Parity:

The cosine and the secant are even functions; the other trigonometric functions are odd functions. That is:

{\displaystyle {\begin{aligned}\sin(-x)&amp;=-\sin x\\\cos(-x)&amp;=\cos x\\\tan(-x)&amp;=-\tan x\\\cot(-x)&amp;=-\cot x\\\csc(-x)&amp;=-\csc x\\\sec(-x)&amp;=\sec x.\end{aligned}}}

Periods :

All trigonometric functions are periodic functions of period 2π. This is the smallest period, except for the tangent and the cotangent, which have π as smallest period. This means that, for every integer k, one has

{\displaystyle {\begin{aligned}\sin(x+2k\pi )&amp;=\sin x\\\cos(x+2k\pi )&amp;=\cos x\\\tan(x+k\pi )&amp;=\tan x\\\cot(x+k\pi )&amp;=\cot x\\\csc(x+2k\pi )&amp;=\csc x\\\sec(x+2k\pi )&amp;=\sec x.\end{aligned}}}

Table of contents::

{\displaystyle {\begin{array}{|c|c|c|}\hline f(x)&amp;f'(x)&amp;\int f(x)\,dx\\\hline \sin x&amp;\cos x&amp;-\cos x+C\\\cos x&amp;-\sin x&amp;\sin x+C\\\tan x&amp;\sec ^{2}x=1+\tan ^{2}x&amp;-\ln |\cos x|+C\\\csc x&amp;-\csc x\cot x&amp;-\ln |\csc x+\cot x|+C\\\sec x&amp;\sec x\tan x&amp;\ln |\sec x+\tan x|+C\\\cot x&amp;-\csc ^{2}x=-1-\cot ^{2}x&amp;\ln |\sin x|+C\\\hline \end{array}}}

Note:

Please scroll to see full answer

Regards

Itzintellectual

Similar questions