Math, asked by MrUnknown9851, 6 months ago

\tt{sec \: X \: + \: tan \: X = \sqrt{ \dfrac{1 \: + \: sin \:X }{1 \: - \: sin \:X }}}

Prove it

Pls urgent anyone solve fast !!!!​

Answers

Answered by vaishnavi9290
27

Problem

Let X,Y and Z be three jointly continuous random variables with joint PDF

fXYZ(x,y,z)=⎧⎩⎨⎪⎪13(x+2y+3z)00≤x,y,z≤1otherwise

Find the joint PDF of X and Y, fXY(x,y).

Let X,Y and Z be three independent random variables with X∼N(μ,σ2), and Y,Z∼Uniform(0,2).

We also know that

E[X2Y+XYZ]=13,E[XY2+ZX2]=14.

Find μ and σ.Let X,Y and Z be three independent random variables with X∼N(μ,σ2), and Y,Z∼Uniform(0,2). We also know that

E[X2Y+XYZ]=13,E[XY2+ZX2]=14.

Find μ and σ.

Answered by Anonymous
1

Hope it's helpful to you

Attachments:
Similar questions