Math, asked by MrUnknown9851, 4 months ago

\tt{sec \: X \: + \: tan \: X = \sqrt{ \dfrac{1 \: + \: sin \:X }{1 \: - \: sin \:X }}}

Prove it

Dont spam
Answer fast !!!​

Answers

Answered by Anonymous
2

Answer:Step-by-step explanation:

QUESTION

\tt{ PROVE\ THAT \frac{cot A - cos A}{cot A + cos A}=\frac{cosec A - 1}{ cosec A + 1}}PROVE THATcotA+cosAcotA−cosA=cosecA+1cosecA−1

Taking L.H.S

\sf{= \frac{ cot A - cos A}{ cot A + cos A}}=cotA+cosAcotA−cosA

\tt{\pink{Writing\ everything\ in\ terms\ of\ sin\ A\ and\ cos\ A}}Writing everything in terms of sin A and cos A

\tt{→ \frac{ \frac{cos A}{ sin A} -cos A}{\frac{cos A}{sin A} +cos A}}→sinAcosA+cosAsinAcosA−cosA

\tt{→ \frac{ \frac{cos A - cos A sin A}{ sin A}}{\frac{cos A +cos A sin A}{ sin A}}}→sinAcosA+cosAsinAsinAcosA−cosAsinA

\tt{→\frac{cos A (1- sin A)}{cos A (1 + sin A)}}→cosA(1+sinA)cosA(1−sinA)

\tt{→\frac{(1 - sin A)}{(1+ sin A)}}→(1+sinA)(1−sinA)

\sf{\red{Dividing\ sin\ A\ on\ numerator\ and\ denominator}}Dividing sin A on numerator and denominator

\tt{→ \frac{\frac{(1- sin A)}{ sin A}}{\frac{(1+sin A)}{ sin A}}}→sinA(1+sinA)sinA(1−sinA)

\tt{→\frac{\frac{1}{sin A}-\frac{sin A}{sin A}}{ \frac{1}{sin A}+\frac{sin A}{sin A}}}→sinA1+sinAsinAsinA1−sinAsinA

\tt{→\frac{\frac{1}{sin A}-1}{\frac{1}{sin A}+1}}→sinA1+1sinA1−1

we\ know\ that ↓{\boxed{\sf{\red{\frac{1}{sin A}=cosec A }}}}we know that↓sinA1=cosecA

\sf{→\frac{cosec A –1}{cosec A + 1}= R.H.S.}→cosecA+1cosecA–1=R.H.S.

\tt{ \frac{cot A - cos A}{cot A + cos A}=\frac{cosec A - 1}{ cosec A + 1}}cotA+cosAcotA−cosA=cosecA+1cosecA−1

So,.

L.H.S = R.H.S

Hence pro

Answered by nihasrajgone2005
0

Answer:

Explanation:

sec

x

tan

x

=

1

cos

x

sin

x

cos

x

=

1

sin

x

cos

x

=

(

1

sin

x

)

2

cos

2

x

=

(

1

sin

x

)

2

1

sin

2

x

=

(

1

sin

x

)

2

1

sin

2

x

=

(

1

sin

x

)

2

(

1

+

sin

x

)

(

1

sin

x

)

=

1

sin

x

1

+

sin

x

please drop some ❤️❤️❤️❤️

Step-by-step explanation:

please f-o-l-l-o-w m-e bro please

Attachments:
Similar questions