Math, asked by KaranArjun08, 3 months ago


  \tt{Simplify \: \frac{1}{2} \sqrt{486} -  \sqrt{ \frac{27}{ \:  \: 2 \: .} }   }

Answers

Answered by Anonymous
38

━━━━━━━━━━

\huge\boxed{\bf{\red{\fcolorbox{blue}{white}{ Answer}}}}

 \bf \scriptsize{As  \: the  \: given \:  Irrational \:  Number  \: are  \: not \:  Similar  \: , So  \: we  \: reduce \:  each} \\ \bf \scriptsize { \: irrational  \: number \:  in  \: the  \: simplest \:  form.}

 \bf \scriptsize{  \frac{1}{2} \sqrt{486} =  \frac{1}{2} \sqrt{9^{2} \times 6 } =  \frac{1}{2} \times  \sqrt{9^{2} }  \times  \sqrt{6}      }

 \bf \scriptsize ={  =  \frac{1}{2} \times 9 \times  \sqrt{6} =  \frac{9}{2} \sqrt{6}    }

 \bf \scriptsize{and \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sqrt{ \frac{27}{2} } =  \sqrt{ \frac{54}{4}  }   =  \sqrt{ \frac{3^{2} \times  \sqrt{6} }{ \sqrt{2}^{2}  }  }  =  \frac{3}{2} \sqrt{6}  }

 \bf \scriptsize{Here, \:  \:  \frac{1}{2}  \sqrt{486} -  \sqrt{ \frac{27}{2} } =  \frac{9}{2} \sqrt{6} -  \frac{3}{2} \sqrt{6} } \\  \\   \bf \scriptsize{ =  \sqrt{6} ( \frac{9}{2}  -  \frac{3}{2})   }  \\  \\  \bf \scriptsize \bold{= 3 \sqrt{6} }

Attachments:
Answered by XxxRAJxxX
5

Given:

Simplify :  \bf{\mathsf{\frac{1}{2} \sqrt{486} - \sqrt{ \frac{27}{2} } }}

Solution:

\sf{\therefore  \frac{1}{2} \sqrt{486} - \sqrt{\frac{27}{2}}}

\implies \sf {\frac{1}{2} \sqrt{2 \times 3 \times 3 \times 3 \times 3 \times 3} -  \sqrt{ \frac{3 \times 3 \times 3}{ \sqrt{2} \times  \sqrt{2}}}}

\implies \sf{\frac{1}{2}  \times 3 \times 3 \sqrt{2 \times 3} - \frac{3}{ \sqrt{2} } \sqrt{3} }

\implies \sf{\frac{9}{2}  \sqrt{6}  -  \frac{3}{ \sqrt{2} }  \sqrt{3}}

 \implies \sf{\frac{9 \sqrt{6} }{2}  -   \frac{3 \sqrt{3} }{ \sqrt{2} }}

 \implies \sf{(\frac{9 \sqrt{6} }{2}  \times  \frac{ \sqrt{2} }{ \sqrt{2} } ) - ( \frac{3 \sqrt{3} }{ \sqrt{2} }  \times   \frac{2}{2} )}

 \implies \sf{\frac{9 \sqrt{12} }{2 \sqrt{2} }  -  \frac{6 \sqrt{3} }{2 \sqrt{2} } }

 \implies \sf{ \frac{9 \sqrt{12}  - 6 \sqrt{3} }{2 \sqrt{2} } }

 \bf \sf \implies 3\sqrt{6}

Similar questions