Math, asked by NITESH761, 20 days ago


\tt Solve :
\tt \dfrac{1}{a+b+x} = \dfrac{1}{a}+\dfrac{1}{b} = \dfrac{1}{x}
\tt where \: \:a+b≠0
Please don't give unnecessary answers.​

Answers

Answered by mathdude500
37

Appropriate Question :-

Solve for x :-

\rm \: \dfrac{1}{a+b+x} = \dfrac{1}{a}+\dfrac{1}{b} + \dfrac{1}{x} \\

\large\underline{\sf{Solution-}}

The given equation is

\rm \: \dfrac{1}{a+b+x} = \dfrac{1}{a}+\dfrac{1}{b} + \dfrac{1}{x} \\

can be rewritten as

\rm \: \dfrac{1}{a+b+x} -  \dfrac{1}{x} \:  =  \: \dfrac{1}{a} + \dfrac{1}{b} \\

On taking LCM on both sides, we get

\rm \: \dfrac{x - (a + b + x)}{a+b+x} \:  =  \: \dfrac{b + a}{a}  \\

\rm \: \dfrac{x - a  - b  -  x}{(a+b+x)x} \:  =  \: \dfrac{b + a}{ab}  \\

\rm \: \dfrac{ - a  - b}{(a+b+x)x} \:  =  \: \dfrac{b + a}{ab}  \\

\rm \: \dfrac{ - (a + b)}{(a+b+x)x} \:  =  \: \dfrac{b + a}{ab}  \\

On dividing both sides by a + b, we get

\rm \: \dfrac{ -1}{(a+b+x)x} \:  =  \: \dfrac{1}{ab}  \\

\rm \: x(x + a + b) =  - ab \\

\rm \:  {x}^{2} + ax + bx =  - ab \\

\rm \:  {x}^{2} + ax + bx  + ab = 0 \\

\rm \: ( {x}^{2} + ax )+ (bx  + ab) = 0 \\

\rm \: x(x + a) + b(x + a) = 0 \\

\rm \: (x + a)(x + b) = 0 \\

\rm \: x + a = 0 \:  \: or \:  \: x + b = 0 \\

\rm\implies \:x  \: =  -  \: a \:  \: or \:  \: x \:  =  \:  -  \: b \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by XxLUCYxX
52

 \bold { \underline{Given,}}

  \color{red}\large \sf \frac{1}{a +  \:  b +  \: x}  \:  \:  =  \:  \:  \frac{1}{a}   + \:  \frac{1}{b}  \:   +  \frac{1}{x}

 \large \color{blue}\sf \implies \: \frac{1}{a\:+\:+\:b\:+x}\:-\:1x\:=\: \frac{1}{a}\:+\:{1}{b}

 \large \color{pink} \: \sf \frac{x\:-\:a\:+\:b\:+x}{a\:+\:b\:+\:x}\:=\: \frac{b\:+\:a}{a}\:\:\:\:\:(By \: taking \: LCM)

 \large\color{aqua} \sf \frac{x\:-\:a\:-\:b\:-x}{(a\:+\:b\:+\:x)x}\:=\: \frac{b\:+\:a}{ab}

 \large \color{lime} \sf\frac{-a\:-\:b}{(a\:+\:b\:+\:x)}\:=\: \frac{b\:+\:a}{ab}

 \large  \sf\color{red}\frac{-(a\:+\:b)}{a\:+\:b\:+\:x}\:=\: \frac{b\:+\:a}{ab}

{ \large \sf \color{blue}\frac{-1}{(a\:+\:b\:+\:x)x}\:=\: \frac{1}{ab}} \:  \:  \:  \:  \small \sf(Dividing\:both\:sides\:by\:a\:+\:b)

 \sf \: x(x +  \: a  \:  + b ) \:  =  \:  -  \: ab \\  \\   \sf {x}^{2}  + ax + bx \:  =  \:  -  \: ab \\  \\  \sf \:  {x}^{2}  + ax  \:  + bx \:  + ab \:  =  \: 0

 \sf \: ({x}^{2}  + ax) \:  +  \: (bx \:  +  \: ab) =  0

 \sf \: x(x + a) + b(x + a) = 0

\sf (x\:+\:a)\:(x\:+\:b) \:  =  \: 0

 \sf \: x + a \:  =  \: 0 \:  \:  \: | \:  \:  \: x + b \:  =  \: 0 \\  \\  \sf \: x \:  =  \:  - a \:  \:  \: | \:  \:  \: x  \: =   \: -  \: b

Similar questions