Math, asked by Anonymous, 1 year ago


 \tt{  \underline{ \underline\bold{For \: IIT \: Aisprants}}} \\  \\   \tt{let \:  \alpha  \: and \:  \beta  \: be \: real. \: z \: be \: a \: complex \: number.} \\  \tt{if \:  {z}^{2} +  \alpha  \: z +  \beta  = 0 \: has \: two \: distinct  \: roots} \\  \tt{on \: the \: line \: re \: z = 1 \: then \:  \beta  \: belongs \: to....}

Answers

Answered by Anonymous
59

\red {\huge {\underline{ \frak{Your \: answEr : }}}}

\blue{\huge \implies   \boxed{\beta  \in(1 \: ,∞)}}

\red {\huge {\underline{ \frak{Explanation : }}}}

\green{\large{ \underline{\mathcal{\star \:Given : }}}}

  \tt{\alpha  \:  \beta \:  are \: real \: number} \\ z \: \tt{is \: a \: complex \: number}

 {z}^{2}  +  \alpha z +  \beta  = 0 \:  \tt{has \: two \: distinct} \\  \tt{roots \: on} \:   \: \mathcal{R_ez = 1}

\green{\large{ \underline{\mathcal{\star \: To \: Find : }}}}

 \tt{value \: of \:  \beta }

\green{\large{ \underline{\mathcal{\star \: Solution : }}}}

 \blacksquare \:  \underline\frak{Quick  \: Facts}

If the roots are ax² + bx + c = 0 are Distinct and Complex, then Discriminent D < 0

D = - 4ac

 \blacksquare \:   \underline\frak{Now \:  head \:  to  \: the  \: Question}

★ Roots of the Equation ;

 \huge z =  \frac{ -  \alpha ±  \sqrt{ { \alpha }^{2} - 4 \beta  }  }{2}

★ Since z is Complex ;

 \huge D =  { \alpha }^{2}  - 4 \beta  &lt; 0

★ Also Given that ;

 \huge R_ez  = 1 \: , \:  \frac{ -  \alpha }{2}  = 1

  \large\implies  \alpha  =  - 2

 \large \therefore  4 - 4 \beta  &lt; 0 \\  \:  \:  \:  \:  \:   \beta  &gt; 1

  \purple{\large \implies   \boxed{\beta  \in(1 \: ,∞)}}

\huge{\red{\ddot{\smile}}}

Answered by Anonymous
112

Answer:

Step-by-step explanation:

z²+αz+β = 0

z_1+ z_2= -α

z_1  z_2= β

x=1

z_1 =1+ iy

z_2 =1− iy

now, 1²+y²=β

β∈(1,∞)

Similar questions