Math, asked by sa5949312, 9 months ago


u {}^{3}  = xyz \:  \:  \frac{1}{v}  = \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z \:  \: }  \:  \: w {}^{2} = x {}^{2} + y {}^{2}   + z {}^{2}  \:  \: then \: prove \: that \:  \:  \\  \frac{d(u \: v \: w)}{d(x \: y \: z) \:  }   =  \frac{v(y - z) \: (z - x) \: (x - y) \: (x + y + z)}{3u {}^{2}w(yz + zx + xy) }

Answers

Answered by komal10381
2

Answer:

what is that tex]u {}^{3} = xyz \: \: \frac{1}{v} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z \: \: } \: \: w {}^{2} = x {}^{2} + y {}^{2} + z {}^{2} \: \: then \: prove \: that \: \: \\ \frac{d(u \: v \: w)}{d(x \: y \: z) \: } = \frac{v(y - z) \: (z - x) \: (x - y) \: (x + y + z)}{3u {}^{2}w(yz + zx + xy) } [/tex]

Similar questions