Math, asked by Abhijithajare, 11 days ago


 \underbrace{ \huge \red{ \underline{ \green{ \sf \: Question:-}}}}


Evaluate the integral :

\sf \displaystyle \int \frac{ \sf\int \limits_0^x \tan^{ -1}t \: dt}{ \sf \: {x}^{3} }

Solve it.​
No spam​

Answers

Answered by IamIronMan0
2

Step-by-step explanation:

First i am direct using formula for integral of arctan since it's well known and substitute limits as t = x and t = 0 , you will get

 \int \:  \frac{x \tan {}^{ - 1} (x) -  \frac{1}{2}   ln(1 +  {x}^{2} ) }{ {x}^{3} } dx \\

Divide and let saparate our question in two parts ,

first

 \int \:  \frac{ \tan {}^{ - 1} (x) }{ {x}^{2} } dx

integration by parts

 = \frac{ -  \tan {}^{ - 1} (x) }{ {x}^{} } +  \int \:  \frac{dx}{x(1 +  {x}^{2} )}  \\  \\ =  \frac{ -  \tan {}^{ - 1} (x) }{ {x}^{} } +   \int( \frac{1}{x}  -  \frac{x}{1 +  {x}^{2} } )dx \\  \\  =  \frac{ -  \tan {}^{ - 1} (x) }{ {x}^{} } +  ln(x)  -  \frac{1}{2}  ln(1 +  {x}^{2} )

Now second part

 \frac{ - 1}{2}   \int \:  \frac{ ln(1 +  {x}^{2} ) }{ {x}^{3} } dx \\  \\ put \:  \: 1 +  {x}^{2}  = y  \\ xdx =  \frac{dy}{2} \\  \\  =  \frac{ - 1}{2}  \int \:  \frac{ ln(y) }{ 2{y}^{2} } dy \\  \\  =  \frac{ - 1}{4}  \  \  \bigg \{\frac{ ln(y) }{ - y}  +  \int \:  \frac{1}{ {y}^{2} } dy \bigg \} \\  \\  =  \frac{1}{4} ( \frac{1 +  ln(y) }{y} ) \\  \\  =  \frac{1}{4}  \frac{1 +  ln(1 +  {x}^{2} ) }{1 +  {x}^{2} }

For final answer add both parts and put a constant C .

Similar questions