Math, asked by Anonymous, 1 month ago

{\underline{\boxed{\frak{\pink{\pmb{Brainly~Moderator}}}}}}

{\underline{\boxed{\frak{\pink{\pmb{Brainly~Stars}}}}}}

{\underline{\boxed{\frak{\blue{\pmb{Brainly~Best~Users}}}}}}


Find the altitudes of an quadrilateral triangle whose sides are 10cm long.

━━━━━━━━━━━━━━━
Note : Step by step Explanation & Diagram required!

▪️Spam answer will be reported.
▪️Don't Greedy For Points.
▪️Best answer will be marked as brainliest.

All the best! :)​

Answers

Answered by Anonymous
100

Given : The length of the sides of an equilateral triangle is 10cm.

To Find : Find the altitudes of an quadrilateral triangle ?

_________________________

Solution : Let the quadrilateral traingle be x.

~

\underline{\frak{As ~we~ know ~that~:}}

  • \underset{\blue{\sf Pythagoras\ Theorem}}{\underbrace{\boxed{\sf{\pink{(H)^2~=~(B)^2~+~(P)^2}}}}}

~

Where,

  • H = Hypotenuse = AB => 10cm
  • B = Base = BD => 5cm
  • P = Perpendicular = (altitude) => AD

~

\pmb{\sf{\underline{According~ to~ the~ Given~ Question~:}}}

~

\qquad{\sf:\implies{(AD)^2~=~(BD)^2~+~(AD)^2}}

\qquad{\sf:\implies{(10cm)^2~=~(5cm)^2~+~(AD)^2}}

\qquad{\sf:\implies{100cm^2~=~25cm^2~=~(AD)^2}}

\qquad{\sf:\implies{AD^2~=~100cm^2~-~25cm^2}}

\qquad{\sf:\implies{AD^2~=~75cm^2}}

\qquad{\sf:\implies{AD^2~=~\sqrt{75cm}}}

\qquad{\sf:\implies{AD~=~\sqrt{3~×~5~×~5cm}}}

\qquad{\sf:\implies{AD~=~\sqrt{3~×~(5)^2cm}}}

\qquad:\implies{\underline{\boxed{\frak{\pink{\pmb{AD~=~5\sqrt{3cm}}}}}}}

~

Hence,

\therefore\underline{\sf{The ~altitudes~ of~ an~ quadrilateral ~triangle~\bf{\underline{\pmb{5\sqrt{3cm}}}}}}

Attachments:
Similar questions