Math, asked by as3801504, 20 days ago


 \underline{ \boxed{\mathbb{\red{question}}}} \\  \\ p  \: and \:  q are  \: zeros  \: of \:  {3x}^{2} + 2 x  - 9 \:  then  \: the \:  value \:  of  \: \:  P  \:  - Q  \:  \: is
{ \boxed{\mathbb{\pink{ reward  \:  for \:  correct   \: answer}}}}

I will give multiple thanks on correct answer
And I will mark brainlist answer

please give correct answer​

Answers

Answered by gowthammaheshw73
17

Step-by-step explanation:

required is 2x² - 5x + 3. polynomial 3x² - 5x + 2.

it is given that, p and q are zeroes of

sum of zeroes = coefficient of x/ coefficient of x²

or, p + q = -(-5)/3 = 5/3

product of zeroes = constant/coefficient

of x²

or, pq = 2/3

now we have to find the polynomial zeroes of which are 1/p and 1/q.now we have to find the polynomial zeroes of which are 1/p and 1/q.

sum of zeroes = 1/p + 1/q

= (p + q)/pq

from equations (1) and (2),

= (5/3)/(2/3) = 5/2

and products of zeros = 1/px 1/q = 1/pq

= 1/(2/3) = 3/2

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:p \: and \: q \: are \: zeroes \: of \:  {3x}^{2} + 2x - 9

We know that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: p + q = - \dfrac{2}{3}

And,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:pq =  - \dfrac{9}{3}  =  - 3

Consider,

\rm :\longmapsto\:p - q

\rm \:  =  \:  \sqrt{ {(p - q)}^{2} }

\rm \:  =  \:  \sqrt{ {(p + q)}^{2}  - 4pq}

 \:  \:  \:  \:  \:  \:  \:  \red{[ \because \:  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy ]}

\rm \:  =  \:  \sqrt{ {\bigg[ - \dfrac{2}{3} \bigg]}^{2}  -  4( - 3) }

\rm \:  =  \:  \sqrt{\dfrac{4}{9} + 12 }

\rm \:  =  \:  \sqrt{\dfrac{4 + 144}{9}}

\rm \:  =  \:  \sqrt{\dfrac{148}{9}}

\rm \:  =  \:  \sqrt{\dfrac{2 \times 2 \times 37}{3 \times 3}}

\rm \:  =  \: \dfrac{2}{3}  \sqrt{37}

Hence,

 \\ \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  p - q =  \frac{2}{3} \sqrt{37} \:  \:  \:  \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta  +   \beta \gamma   +  \gamma \alpha   =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions