Math, asked by xxprem6xx, 6 hours ago

 \underline{ \boxed{\mathbb{\red{question}}}} \\ \\ p \: and \: q are \: zeros \: of \: {3x}^{2} + 2 x - 9 \: then \: the \: value \: of \: \: P \: - Q \: \: is { \boxed{\mathbb{\pink{ reward \: for \: correct \: answer}}}}

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:p \: and \: q \: are \: zeroes \: of \:  {3x}^{2} + 2x - 9

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:p + q  \: =  \:  -  \: \dfrac{2}{3}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:p q  \: =  \:  -  \: \dfrac{9}{3}  =  \:  -  \: 3

Now, Consider

\rm :\longmapsto\:p - q

can be rewritten as

\rm \:  =  \:  \sqrt{ {(p - q)}^{2} }

\rm \:  =  \:  \sqrt{ {p}^{2}  +  {q}^{2}  - 2pq}

\rm \:  =  \:  \sqrt{ {p}^{2}  +  {q}^{2} +  2pq - 4pq}

\rm \:  =  \:  \sqrt{ {(p + q)}^{2} - 4pq}

\rm \:  =  \:  \sqrt{ {\bigg[ - \dfrac{2}{3} \bigg]}^{2}  - 4 \times ( - 3)}

\rm \:  =  \:  \sqrt{\dfrac{4}{9}  + 12}

\rm \:  =  \:  \sqrt{\dfrac{4 + 108}{9}}

\rm \:  =  \:  \sqrt{\dfrac{112}{9}}

\rm \:  =  \:  \sqrt{\dfrac{4 \times 4 \times 7}{3 \times 3} }

\rm \:  =  \: \dfrac{4}{3} \sqrt{7}

\rm\implies \:\boxed{\tt{ p - q =  \frac{4}{3} \sqrt{7}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta  \gamma  +  \gamma   \alpha =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Answered by itsplover4
1

Answer:

Determine the concentration and total amount of glucose and (NH4)2SO4 in the nutrient medium. b). Determine the yield coefficients YXS and YXO2. c). Determine the total amount of oxygen required

Similar questions