Math, asked by Anonymous, 4 days ago

{ \underline{ \frak{ \red{Question}}}}

Evaluate :
 \ \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1-\frac{3x}{5}\bigg)^{\frac{1}{x}}}}

{ \sf{ \red{No \: Spams}}}



{ \sf{ \red{No \: Copied \: Answer}}}

{ \underline{ \rule{200pt}{7pt}}}

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1-\frac{3x}{5}\bigg)^{\dfrac{1}{x}}}} \\

can be rewritten as

\rm \:  =  \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1 + \frac{ - 3x}{5}\bigg)^{\dfrac{1}{x}}}} \\

can be further rewritten as

\rm \:  =  \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1 + \frac{ - 3x}{5}\bigg)^{\dfrac{5}{ - 3x}  \times \dfrac{ - 3x}{5} \times  \dfrac{1}{x}}}} \\

can be further rewritten as

\rm \:  =  \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1 + \frac{ - 3x}{5}\bigg)^{\dfrac{5}{ - 3x}  \times \dfrac{ - 3}{5}}}} \\

We know,

\boxed{\sf{  \:\displaystyle \lim_{x \to 0}\rm \:  {\bigg(1 + x \bigg) }^{\dfrac{1}{x} }  = e \:  \: }} \\

So, using this result, we get

\rm \: =  \:  {\bigg(e\bigg) }^{\dfrac{ - 3}{5} }  \\

Hence,

\rm\implies \:\rm \: \boxed{\sf{  \:\sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1-\frac{3x}{5}\bigg)^{\dfrac{1}{x}}}} \: =  \:  {\bigg(e\bigg) }^{\dfrac{ - 3}{5} }  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\displaystyle \lim_{x \to 0}\rm \:  \frac{sinx}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x \to 0}\rm \:  \frac{tanx}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x \to 0}\rm \:  \frac{log(1 + x)}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x \to 0}\rm \:  \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x \to 0}\rm \:  \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \:  \: }} \\

Answered by juwairiyahimran18
6

\large\underline{\sf{Solution-}} \\  \\ \begin{gathered}\rm \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1-\frac{3x}{5}\bigg)^{\dfrac{1}{x}}}} \\ \end{gathered}  \\  \\ can \:  \:  be  \:  \: rewritten \:  \:  as \\  \\\begin{gathered}\rm \: = \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1 + \frac{ - 3x}{5}\bigg)^{\dfrac{1}{x}}}} \\ \end{gathered}  \\  \\ can \:  \:  be  \:  \: further \:  \:  rewritten \:  \:  as \\  \\ \begin{gathered}\rm \: = \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1 + \frac{ - 3x}{5}\bigg)^{\dfrac{5}{ - 3x} \times \dfrac{ - 3x}{5} \times \dfrac{1}{x}}}} \\ \end{gathered}  \\  \\ can \:  \:  be \:  \:  further \:  \:  rewritten \:  \:  as \\  \\ \begin{gathered}\rm \: = \: \sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1 + \frac{ - 3x}{5}\bigg)^{\dfrac{5}{ - 3x} \times \dfrac{ - 3}{5}}}} \\\end{gathered}  \\  \\ We  \:  \: know, \\  \\\begin{gathered}\boxed{\sf{  \:\displaystyle \lim_{x \to 0}\rm \: {\bigg(1 + x \bigg) }^{\dfrac{1}{x} } = e \: \: }} \\ \end{gathered} \\\\So \:  \: , using \:  \:  this \:  \:  result \:  \: ,  \:  \: we  \:  \: get \\  \\\begin{gathered}\rm \: =  \: {\bigg(e\bigg) }^{\dfrac{ - 3}{5} } \\ \end{gathered}  \\  \\ Hence, \:  \:\\\\ \begin{gathered}\rm\implies \:\rm \: \boxed{\sf{  \:\sf{\rm \displaystyle \lim_{x \to 0}\ \sf{\bigg(1-\frac{3x}{5}\bigg)^{\dfrac{1}{x}}}} \: =  \: {\bigg(e\bigg) }^{\dfrac{ - 3}{5} } \: \: }} \\ \end{gathered}  \\  \\

Similar questions