Math, asked by Mister360, 5 months ago

\underline{\Huge {\purple{\sf Question}}}

\sf If\:roots\:of\:the\:equation\:2x^2-4x+2=0\:are\;\alpha\:and\:\beta\;,then\:prove\:that, \\ \sf \dfrac {\alpha}{\beta}+ \dfrac {\beta}{\alpha}+4\left(\dfrac {1}{\alpha} + \dfrac{1}{\beta}\right)+ 2\alpha\beta=12.

\underline{\sf Note:-}

Answer only if you know.
\maltese Spammed answers will be deleted .​

Answers

Answered by Anonymous
5

Understanding the question:

Here we have given a quadratic equation and roots are ɑ and þ.So we can easily find the value of ɑ and þ by factorising the equation and after putting the values of ɑ and þ in LHS of proving equation,the required equation will be proved.

‎ ‎ ‎ ‎ ‎ ‎

So let's start! :D

➛2x²-4x+2=0

‎ ‎ ‎ ‎ ‎ ‎

➛2x²-2x-2x+2=0

‎ ‎ ‎ ‎ ‎ ‎

➛2x(x-1)-2(x-2)=0

‎ ‎ ‎ ‎ ‎ ‎

➛(x-1)(2x-2)=0

‎ ‎ ‎ ‎ ‎ ‎

x-1=0 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 2x-2=0

x=1 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎2x=2

x=1 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ x=1

‎ ‎ ‎ ‎ ‎ ‎

So both ‎ɑ and þ are 1 and 1.

We have to prove:-

✰ ɑ/þ+þ/ɑ+4( 1/ɑ+1/þ)+2ɑþ=12

‎ ‎ ‎ ‎ ‎ ‎

Put the value of ɑ and þ.

‎ ‎ ‎ ‎ ‎ ‎

➛1/1+1/1+ 4[(1)+(1)]+2(1)(1)=12

➛1+1+4(2)+2=12

‎ ‎ ‎ ‎ ‎ ‎

➛2+8+2=12

‎ ‎ ‎ ‎ ‎ ‎

➛12=12 ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

∴LHS=RHS

Answered by anindyaadhikari13
5

Required Answer:-

Given:

  • The roots of the quadratic equation 2x² - 4x + 2 = 0 are α and β.

To Prove:

  • α/β + β/α + 4(1/α + 1/β) + 2αβ = 12

Solution:

The general form of a quadratic equation is,

➡ ax² + bx + c = 0

In a quadratic equation, there can have a maximum of two roots. We are provided with a Quadratic equation whose roots are α and β.

Given equation,

➡ 2x² - 4x + 2 = 0

Taking 2 as common,

➡ 2(x² - 2x + 1) = 0

Dividing both sides by 2, we get,

➡ x² - 2x + 1 = 0

This is in the standard form. Now, roots of a quadratic equation are very nicely related to the coefficient of each term. Their relationship is given by,

➡ α + β = -b/a

➡ αβ = c/a

Here,

  • a = coefficient of x²
  • b = coefficient of x.
  • c = coefficient of x⁰

In this equation,

  • a = 1
  • b = -2
  • c = 1

Therefore,

➡ α + β = -b/a

➡ α + β = -(-2)/1

➡ α + β = 2

Again,

➡ αβ = c/a

➡ αβ = 1/1

➡ αβ = 1

Now, let's prove this.

Taking LHS,

α/β + β/α + 4(1/α + 1/β) + 2αβ

= (α² + β²)/αβ + 4[(α + β)/(αβ)] + 2αβ

= [(α + β)² - 2αβ]/αβ + 4[(α + β)/(αβ)] + 2αβ

Now, we know all the values. Substitute that,

= [(2² - 2 × 1)/1 + 4 × 2/1 + 2 × 1

= (4 - 2) + 8 + 2

= 2 + 8 + 2

= 12

= RHS (Hence Proved)


Mister360: tysm :)
anindyaadhikari13: Welcome.
Anonymous: Awsm!
Similar questions