Math, asked by AnanyaBaalveer, 19 days ago


\underline{\sf{if \: y =  { {x}^{x} }^{x} \: then \: find \:  \frac{dy}{dx}  }}
Answer with proper explanation​

Answers

Answered by praksmitasila
15

Answer:

We have,

y=(xx)x

y=xx2

 

On taking log both sides, we get

logy=x2logx                                               …… (1)

 

On differentiating w.r.t x, we get

y1dxdy=xx2+logx(2x)

y1dxdy=x+2xlogx

dxdy=y(x+2xlogx)

dxdy=(xx)x(x+2xlogx)

dxdy=x(xx)x(1+2logx)

PLZ MARK ME BRAINLIEST

Answered by Anonymous
34

\bf y =  {x}^{{x}^{x} }  \\  \\ \sf {\bf{ \underline{ \purple{Applying \: log \: in \: the \: both \: sides}}}} \\  \\  \sf log(y) =  log({x}^{{x}^{x} }) \\  \\ \sf log(y) =  {x}^{x} log(x) \\  \\{\bf{ \underline{ \purple{Differentiate \: w.r.t \: \: x}}}} \\  \\   \sf \dfrac{d log(y) }{dy}. \dfrac{dy}{dx} =  {x}^{x}.\dfrac{d log(x) }{dx} + log(x) \dfrac{d ({x}^{x}) }{dx} \\  \\  \sf  \dfrac{1}{y}.\dfrac{dy}{dx} =  {x}^{x}. \dfrac{1}{x} + log(x) \dfrac{d ({x}^{x}) }{dx} \\  \\ { \bf{ \underline{ \purple{ Let  \: {x}^{x}  = v}}}}  \\  \\  \sf {x}^{x}  = v \\  \\ {\bf{ \underline{ \purple{Applying \: log \: in \: the \: both \: sides}}}} \\  \\  \sf log( {x}^{x}) = log(v) \\  \\  \sf log(v) = xlogx \\  \\  {\bf{ \underline{ \purple{Differentiate \: w.r.t \:  \: x \: and \: applying \:  product \: rule}}}} \\  \\  \sf  \dfrac{dlog(v)}{dv} . \dfrac{dv}{dx}  = x \dfrac{log(x)}{dx}  + log(x). \dfrac{dx}{dx}  \\  \\  \sf  \frac{1}{v}. \dfrac{dv}{dx}  = x. \frac{1}{x }  + log(x) \\  \\  \sf  \dfrac{dv}{dx}  = {x}^{x}(1 +  log(x)) \\  \\  {\bf{ \underline{ \purple{Now, \: substitute \: the \: value}}}} \\  \\  \sf \dfrac{1}{y}.\dfrac{dy}{dx} =  {x}^{x}. \dfrac{1}{x} + log(x) \dfrac{d ({x}^{x}) }{dx} \\  \\  \sf \dfrac{1}{y}.\dfrac{dy}{dx} = {x}^{x}. \dfrac{1}{x} + log(x).{x}^{x} (1 +  log(x)) \\  \\  \sf \dfrac{dy}{dx} = y{x}^{x}\[ \left [ \ \dfrac{1}{x} + log(x)(1 +  log(x))  \right] \]\\ \\

  • Quick review

Log pⁿ = n logp

Differentiation log p = 1/p

(uv)' = u'v + uv'

Similar questions