Math, asked by sanju2363, 7 hours ago


  \underline{  \tt{question :}}  \begin{cases}\bf{ \red{If  \:  \: the  \: seventh  \: term \:  from \:  the \:  beginning \:  and  \:  end  \: in \:  \:  the \:  binomial \:  expansion \:  of  \:   \bigg( \sqrt[3]{2 }{ +  \frac{1}{ \sqrt[3]{3} } }^{n}  \bigg)  \: are equal \:  , find \:  n}} \end{cases} \\
 \underline{ \tt{Answer : }} \begin{cases} \boxed{ \pmb{ \frak{ \blue{n \:  = 12}}}} \end{cases}

Explore the answer !!​

Answers

Answered by Anonymous
64

 \: \huge\bf\underline \red{\underline{Answer}}

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{n= 12}}\mid}}}}

I Hope this Attachment will help you! ✌️

Attachments:
Answered by BrainlyTornado
117

ANSWER:

  • The value of n = 12.

\\ \\

GIVEN:

  • The seventh term from the beginning and end in the binomial expansion are equal.

\\ \\

TO FIND:

  • The number of terms.

\\ \\

EXPLANATION:

\bigstar\blue{\boxed{\bold{\large{\pink{T_{r+1} = \ ^nC_r\ a^{n-r}b^r}}}}} \\  \\  \\ \dashrightarrow \sf 7^{th}\ term\ from\ the\ beginning \implies r + 1 = 7 \\  \\  \\  \dashrightarrow\sf T_{6+1} = \ ^nC_6\  (\sqrt[3]{2})^{n-6} \bigg( \dfrac{1}{ \sqrt[3]{3} }\bigg) ^6  \\  \\  \\ \dashrightarrow\sf T_{6+1} = \ ^nC_6\  (\sqrt[3]{2})^{n-6}(\sqrt[3]{3} ) ^{ - 6} \\  \\  \\  \sf \dashrightarrow 7^{th}\ term\ from\ the\ end \implies r + 1 = n  + 1 - 7 + 1 \\  \\  \\ \sf \implies r + 1 = n - 5 \\  \\ \\ \dashrightarrow \sf T_{n - 6+1} = \ ^nC_{n - 6}\  (\sqrt[3]{2})^{n-n + 6} \bigg( \dfrac{1}{ \sqrt[3]{3} }\bigg) ^{n - 6}  \\  \\ \\ \dashrightarrow \sf T_{n - 6+1} = \ ^nC_{n - 6}\  (\sqrt[3]{2})^{6}(\sqrt[3]{3} ) ^{ 6 - n} \\  \\ \\  \dashrightarrow\sf T_{6+1} = T_{n-6+1} \\  \\  \\ \dashrightarrow \sf \dfrac{T_{6+1}}{T_{n-6+1}} = 1 \\  \\  \\ \sf \dashrightarrow \dfrac{\ ^nC_6\  (\sqrt[3]{2})^{n-6}(\sqrt[3]{3} ) ^{ - 6}}{\ ^nC_{n - 6}\  (\sqrt[3]{2})^{6}(\sqrt[3]{3} ) ^{ 6 - n}} = 1 \\  \\  \\

\bigstar\red{\boxed{\bold{\large{\green{^nC_r=\dfrac{n!}{r!(n-r)!}}}}}} \\  \\  \\ \dashrightarrow\sf  \dfrac{\dfrac{n!}{6!(n-6)!}\  (\sqrt[3]{2})^{n-6}(\sqrt[3]{3} ) ^{ - 6}}{\dfrac{n!}{(n - 6)!(n-n + 6)!}\  (\sqrt[3]{2})^{6}(\sqrt[3]{3} ) ^{ 6 - n}} = 1 \\  \\  \\ \dashrightarrow \sf  \dfrac{(\sqrt[3]{2})^{n-6}(\sqrt[3]{3} ) ^{ - 6}}{(\sqrt[3]{2})^{6}(\sqrt[3]{3} ) ^{ 6 - n}} = 1 \\  \\  \\ \dashrightarrow\sf  (\sqrt[3]{2})^{n-6 - 6}(\sqrt[3]{3} ) ^{ - 6 - 6 + n} = 1 \\  \\ \\ \dashrightarrow \sf  (\sqrt[3]{2})^{n-12}(\sqrt[3]{3} ) ^{n - 12} = 1 \\  \\  \\ \dashrightarrow\sf  (\sqrt[3]{6})^{n-12}= 1 \\  \\ \\

 \dashrightarrow\sf   \bigg(6 \bigg)^ {\dfrac{{n-12}}{3} }= {6}^{0}\\ \\ \\ \tt \orange {\star \ Bases \ are \ equal\ so, \ equate \ the \ powers.}\\  \\  \\ \dashrightarrow\sf \dfrac{{n-12}}{3}= 0 \\  \\  \\ \dashrightarrow\sf n-12=  0 \\  \\  \\ \dashrightarrow \sf n = 12 \\  \\  \\

The value of n = 12.

Similar questions