Math, asked by llApolloll, 2 days ago


 \underline{\underline{ \bf Question}}
Prove that :-
 \boxed{ \bf \dfrac { \cos\theta+  \cos2\theta+  \cos3 \theta + cos 4\theta}{\sin\theta+  \sin2\theta+  \sin3 \theta + sin4\theta} =  \cot\dfrac{5}{2} \theta}
Topic : Compound and Multiple Angles ( 11 th)
Relevant Answers Needed !​

Answers

Answered by mathdude500
86

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac { \cos\theta+ \cos2\theta+ \cos3 \theta + cos 4\theta}{\sin\theta+ \sin2\theta+ \sin3 \theta + sin4\theta}

can be re-arranged as

\rm \:  =  \: \dfrac { (\cos4\theta+ \cos\theta)+( \cos3 \theta + cos 2\theta)}{(\sin4\theta+ \sin\theta)+ (\sin3 \theta + sin2\theta)}

We know,

\boxed{\tt{ cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

and

\boxed{\tt{sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

So, using these Identities, we get

\rm \:  =  \: \dfrac{2cos\bigg[\dfrac{4 \theta  +  \theta }{2} \bigg]cos\bigg[\dfrac{4 \theta  -  \theta }{2} \bigg] + 2cos\bigg[\dfrac{3 \theta  + 2 \theta }{2} \bigg]cos\bigg[\dfrac{3 \theta  - 2 \theta }{2} \bigg]}{2sin\bigg[\dfrac{4 \theta  +  \theta }{2} \bigg]cos\bigg[\dfrac{4 \theta  -  \theta }{2} \bigg] + 2sin\bigg[\dfrac{3 \theta  + 2 \theta }{2} \bigg]cos\bigg[\dfrac{3 \theta  - 2 \theta }{2} \bigg]}  \\

\rm \:  =  \: \dfrac{2cos\bigg[\dfrac{5 \theta }{2} \bigg]cos\bigg[\dfrac{3 \theta }{2} \bigg] + 2cos\bigg[\dfrac{5 \theta }{2} \bigg]cos\bigg[\dfrac{ \theta }{2} \bigg]}{2sin\bigg[\dfrac{5 \theta }{2} \bigg]cos\bigg[\dfrac{3 \theta }{2} \bigg] + 2sin\bigg[\dfrac{5 \theta }{2} \bigg]cos\bigg[\dfrac{ \theta }{2} \bigg]}  \\

\rm \:  =  \: \dfrac{ \cancel2 \: cos\bigg[\dfrac{5 \theta }{2} \bigg] \cancel{\bigg(cos\bigg[\dfrac{3 \theta }{2} \bigg] + cos\bigg[\dfrac{ \theta }{2} \bigg]\bigg)} \: }{ \cancel2 \: sin\bigg[\dfrac{5 \theta }{2} \bigg] \cancel{\bigg(cos\bigg[\dfrac{3 \theta }{2} \bigg] + cos\bigg[\dfrac{ \theta }{2} \bigg]\bigg)}}  \\

\rm \:  =  \: \dfrac{cos\bigg[\dfrac{5 \theta }{2} \bigg]}{sin\bigg[\dfrac{5 \theta }{2} \bigg]}  \\

\rm \:  =  \: cot\bigg(\dfrac{5 \theta }{2} \bigg)

Hence,

\boxed{\tt{ \dfrac { \cos\theta+ \cos2\theta+ \cos3 \theta + cos 4\theta}{\sin\theta+ \sin2\theta+ \sin3 \theta + sin4\theta} = \cot\dfrac{5 \theta }{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ cosx -  cosy =  - 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\tt{sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\tt{ 2sinx \: cosy \:  =  \: sin(x + y) + sin(x - y) \: }} \\

\boxed{\tt{ 2cosx \: cosy \:  =  \: cos(x + y) + cos(x - y) \: }} \\

\boxed{\tt{ 2sinx \: siny \:  =  \: cos(x  -  y)  -  cos(x + y) \: }} \\


amansharma264: Excellent
Answered by Anonymous
67

Answer:

Question :-

\mapsto \bf \dfrac{\cos\theta + \cos2\theta + \cos3\theta + \cos4\theta}{\sin\theta + \sin2\theta + \sin3\theta + \sin4\theta} =\: cot\bigg[\dfrac{5\theta}{2}\bigg]\\

Solution :-

\bigstar\: \: \sf\bold{\purple{L.H.S =\: \dfrac{cos\theta + cos2\theta + cos3\theta + cos4\theta}{sin\theta + sin2\theta + sin3\theta + sin4\theta}}}\\

We can also write this :

\implies \sf \dfrac{(cos 4\theta + cos\theta) + (cos 3\theta + cos 2\theta)}{(sin 4\theta + sin\theta) + (sin 3\theta + sin 2\theta)}\\

As we know that :

\clubsuit\: \: \sf\bold{\pink{cosA + cosB =\: 2cos\bigg\lgroup \dfrac{A + B}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{A - B}{2}\bigg\rgroup}}\\

\clubsuit\: \: \sf\bold{\pink{sinA + sinB =\: 2sin\bigg\lgroup \dfrac{A + B}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{A - B}{2}\bigg\rgroup}}\\

So, according to the formula we get :

\implies \sf \dfrac{2 cos\bigg(\dfrac{4\theta + \theta}{2}\bigg) cos\bigg(\dfrac{4\theta - \theta}{2}\bigg) + 2cos\bigg(\dfrac{3\theta + 2\theta}{2}\bigg) cos\bigg(\dfrac{3\theta - 2\theta}{2}\bigg)}{2sin\bigg(\dfrac{4\theta + \theta}{2}\bigg) cos\bigg(\dfrac{4\theta - \theta}{2}\bigg) + 2sin\bigg(\dfrac{3\theta + 2\theta}{2}\bigg) cos\bigg(\dfrac{3\theta - 2\theta}{2}\bigg)}\\

\implies \sf \dfrac{2 cos\bigg(\dfrac{5\theta}{2}\bigg) cos\bigg(\dfrac{3\theta}{2}\bigg) + 2cos\bigg(\dfrac{5\theta}{2}\bigg) cos\bigg(\dfrac{\theta}{2}\bigg)}{2 sin\bigg(\dfrac{5\theta}{2}\bigg) cos\bigg(\dfrac{3\theta}{2}\bigg) + 2sin\bigg(\dfrac{5\theta}{2}\bigg) cos\bigg(\dfrac{\theta}{2}\bigg)}\\

By taking common we get,

\implies \sf \dfrac{2 cos\bigg(\dfrac{5\theta}{2}\bigg) \bigg\{ \cancel{cos\bigg(\dfrac{3\theta}{2}\bigg) + cos\bigg(\dfrac{\theta}{2}\bigg)} \bigg\} }{2 sin\bigg(\dfrac{5\theta}{2}\bigg) \bigg\{ \cancel{cos\bigg(\dfrac{3\theta}{2}\bigg) + cos\bigg(\dfrac{\theta}{2}\bigg)} \bigg\} }\\

\implies \sf \dfrac{\cancel{2} cos\bigg(\dfrac{5\theta}{2}\bigg)}{\cancel{2} sin \bigg(\dfrac{5\theta}{2}\bigg)}\\

\implies \sf \dfrac{cos \bigg(\dfrac{5\theta}{2}\bigg)}{sin \bigg(\dfrac{5\theta}{2}\bigg)}\\

As we know that :

\clubsuit \sf\bold{\pink{\dfrac{cos\theta}{sin\theta} =\: cot\theta}}

So, by using this identities we get,

\implies \sf\bold{\red{cot \bigg[\dfrac{5\theta}{2}\bigg]}}\\

\\

Again,

\bigstar\: \: \sf\bold{\purple{R.H.S =\: cot\bigg[\dfrac{5\theta}{2}\bigg]}}\\

\implies \sf\bold{\red{cot\bigg[\dfrac{5\theta}{2}\bigg]}}\\

Hence,

\dashrightarrow \sf\bold{L.H.S =\: R.H.S}

\sf\boxed{\bold{\green{HENCE\:  PROVED}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions