Math, asked by Anonymous, 2 months ago


{ \underline{ \underline{ \bigstar \:  \:  \:  \pmb{ \sf{Evaluate  \:  \: this \:  \:  Integral \:  : }}}}} \\
 \int_{0} ^{2\pi}  \frac{1}{1 +  {2}^{ \sin(x) } } dx \\

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{0} ^{2\pi}\sf \dfrac{1}{1 +  {2}^{sinx} }dx

Let assume that

\rm :\longmapsto\:Let \: I \:  =  \: \displaystyle\int_{0} ^{2\pi}\sf\: \dfrac{1}{1 +  {2}^{sinx} }dx  -  - (1)

We know,

\rm :\longmapsto\:\displaystyle\int_{0} ^{a}\sf \: f(x) \: dx \:  =  \: \displaystyle\int_{0} ^{a}\sf f(a - x) \: dx

So,

\rm :\longmapsto\:\: I \:  =  \: \displaystyle\int_{0} ^{2\pi}\sf\: \dfrac{1}{1 +  {2}^{sin(2\pi - x)} }dx

\rm :\longmapsto\:\: I \:  =  \: \displaystyle\int_{0} ^{2\pi}\sf\: \dfrac{1}{1 +  {2}^{ - sinx} }dx

\red{\bigg \{ \because \:sin(2\pi - x) = -  \:  sinx \bigg \}}

\rm :\longmapsto\:\: I \:  =  \: \displaystyle\int_{0} ^{2\pi}\sf\: \dfrac{1}{1 + \dfrac{1}{ {2}^{sinx} } }dx

\rm :\longmapsto\:\: I \:  =  \: \displaystyle\int_{0} ^{2\pi}\sf\: \dfrac{ {2}^{sinx} }{ {2}^{sinx}  + 1}dx -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:\:2 I \:  =  \: \displaystyle\int_{0} ^{2\pi}\sf\: \dfrac{ 1 + {2}^{sinx} }{ {2}^{sinx}  + 1}dx

\rm :\longmapsto\:\:2 I \:  =  \: \displaystyle\int_{0} ^{2\pi}\sf\: 1 \: dx

\rm :\longmapsto\:\:2 I \:  =  \: \bigg( x\bigg)_{0} ^{2\pi}

\rm :\longmapsto\:\:2 I \:  =  \: 2\pi - 0

\rm :\longmapsto\:\: I \:  =  \: \pi

Additional Information :-

\rm :\longmapsto\:\displaystyle\int_{a} ^{b}\sf \: f(x) \: dx \:  =  \: \displaystyle\int_{a} ^{b}\sf f(a  + b- x) \: dx

\rm :\longmapsto\:\displaystyle\int_{a} ^{b}\sf \: f(x) \: dx \:  =  \: \displaystyle\int_{a} ^{b}\sf f(y) \: dy

\rm :\longmapsto\:\displaystyle\int_{a} ^{b}\sf \: f(x) \: dx \:  =  -  \: \displaystyle\int_{b} ^{a}\sf f(x) \: dx

\rm :\longmapsto\:\displaystyle\int_{0} ^{2a}\sf \: f(x) \: dx \:  =  \: 2\displaystyle\int_{0} ^{a}\sf f( x) \: dx \:  \: if \: f(2a - x) = f(x)

\rm :\longmapsto\:\displaystyle\int_{0} ^{2a}\sf \: f(x) \: dx \:  =  0 \:  \: if \: f(2a - x) =  - f(x)

\rm :\longmapsto\:\displaystyle\int_{ - a} ^{a}\sf \: f(x) \: dx \:  =  \: 2\displaystyle\int_{0} ^{a}\sf f( x) \: dx \:  \: if \: f( - x) = f(x)

\rm :\longmapsto\:\displaystyle\int_{ - a} ^{a}\sf \: f(x) \: dx \:  =  0 \:  \: if \: f( - x) =  - f(x)

Similar questions