Math, asked by itzbrainlygirl5, 9 months ago

\underline{\underline{\red{\bf{Question?}}}}

◕ A vessel full of water is in the form of an inverted cone of height 8 cm and the radius of its top, which is open, is 5 cm. 100 spherical lead balls are dropped into the vessel. one-fourth of the water flows out of the vessel. find the radius of a spherical ball.

Spammers be away

Answers

Answered by Anonymous
80

Qᴜᴇsᴛɪᴏɴ :

➥ A vessel full of water is in the form of an inverted cone of height 8 cm and the radius of its top, which is open, is 5 cm. 100 spherical lead balls are dropped into the vessel. one-fourth of the water flows out of the vessel. find the radius of a spherical ball.

Aɴsᴡᴇʀ :

➥ Radius of spherical ball = 0.5 cm

Gɪᴠᴇɴ :

➤ Height of the conical vessel (h) = 8 cm

➤ Radius of the conical vessel (r) = 5 cm

Tᴏ Fɪɴᴅ :

➤ Radius of spherical ball = ?

Sᴏʟᴜᴛɪᴏɴ

Volume of the conical vessel = \sf{\dfrac{1}{3}}πr²h

On putting values

 \sf{ :\implies  \left( \dfrac{1}{3}\pi \times 5 \times 5 \times 8 \right)  {cm}^{3}   }

 \sf{ :\implies  \left( \dfrac{200\pi}{3} \right)  {cm}^{3}   }

Volume of water flown out on dropping spherical balls

 \sf{ :\implies  \left( \dfrac{1}{4} \: of \: \dfrac{200\pi}{3}   \right)  {cm}^{3}   }

 \sf{ :\implies  \left(  \dfrac{50\pi}{3} \right)  {cm}^{3}   }

Let the radius of each spherical ball be R.

Volume of each spherical ball = \sf{\dfrac{4}{3}}πR²

Now, volume of 100 balls = volume of water flow out

  \sf{: \implies 100 \times \dfrac{4}{3}\pi {R}^{2}   =  \left(  \dfrac{50\pi}{3} \right) {cm}^{3} }

 \sf{: \implies {R}^{3} =  \left(  \dfrac{50}{3} \times  \dfrac{3}{4}  \times  \dfrac{1}{100}  \right) {cm}^{3}  }

 \sf{: \implies {R}^{3} =  \dfrac{1}{8}  \: {cm}^{3}  }

 \sf{: \implies R=  \sqrt[3]{ \dfrac{1}{8} }  \: cm}

 \sf{: \implies R=\dfrac{1}{2}   \: cm}

 \sf{: \implies \underline{ \overline{ \boxed{ \purple{ \bf{ \:  \: R= 0.5  \: cm \:  \: }}}}}}

Hence, the radius of a spherical ball is 0.5 cm.

Answered by Anonymous
11

\Huge{\purple{\underline{\textsf{Solution}}}}

{\red{\underline{\bf{Volume\:of\:water\:in\:cone\::-}}}}

\implies \:     \pink{\sf \: \dfrac{1}{3} \pi \: r^{2} h} \\  \\ \\  \implies \: \pink{\sf \: \dfrac{1}{3} \pi \: (5 )  ^{2} h} \\  \\  \\ \implies \: \pink{\sf \: \dfrac{200}{3} \pi \: cm^{3} }

{\red{\underline{\bf{Volume\:of\:water\:flows\:out\::-}}}}

\implies \:     \orange{\sf \: \dfrac{1}{4} \times \:\dfrac{200}{3}\pi} \\  \\  \\  \: \implies \:    \orange{\sf \:\dfrac{50}{3}\pi \: cm^{3} }

\bigstar\:{\red{\underline{\bf{Let\:the\:radius\:of\:one \: \: spherical \: ball\:be\:r\:cm:-}}}}

\longrightarrow\:\gray{\sf \dfrac{4}{3}\pi r^3 \times 100 = \dfrac{50}{3} \pi }

\longrightarrow\:\gray{\sf r^3 = \dfrac{50}{4 \times 100}}

\longrightarrow\:\gray{\sf r^3 = \dfrac{1}{8}}

\longrightarrow\:\gray{\sf r = \dfrac{1}{2}}

\longrightarrow\:\underline{\boxed{\gray{\bf r = 0.5\:cm}}}\green\bigstar

Therefore, the radius of spherical ball is 0.5 cm.

Similar questions