Math, asked by MagneticFieId, 13 days ago

\underline{\underline{\sf Only\:Good\:Users}}
\text{Evaluate-}
\\\int \dfrac{(x^3+8)(x-1)}{x^2-2x+4} \:dx
\begin{gathered} \\\end{gathered} ​
\boxed{\text{Topic - Integration\:Class \:12th}}
\bf{No\:Spams\:/\:Copied\: Answer}

Answers

Answered by Anonymous
53

Given :-

 \quad \leadsto \quad \displaystyle \int \sf \dfrac{(x^3+8)(x-1)}{x^2-2x+4} \:dx

To Find :-

Value of the Integral

Solution :-

Consider  \displaystyle \int \sf \dfrac{(x^3+8)(x-1)}{x^2-2x+4} \:dx

 { : \implies \quad \displaystyle \int \sf \dfrac{(x³+ 8)(x-1)}{x²-2x+4} \: dx}

 { : \implies \quad \displaystyle \int \sf \dfrac{(x³+ 2³)(x-1)}{x²-2x+4} \: dx}

 { : \implies \quad \displaystyle \int \sf \dfrac{(x + 2)(x² - 2 \times \bf x \sf + 2²)(x-1)}{x²-2x+4}\: dx }

 { : \implies \quad \displaystyle \int \sf \dfrac{(x + 2)(x² - 2x + 4)(x-1)}{x²-2x+4} \: dx }

 { : \implies \quad \displaystyle \int \sf \dfrac{(x + 2)\cancel{(x² - 2x + 4)}(x-1)}{\cancel{(x²-2x+4)}}\: dx }

 { : \implies \quad \displaystyle \int \sf \{( x + 2 ) ( x - 1 )\} dx }

 { : \implies \quad \displaystyle \int \sf \{x ( x - 1 ) + 2 ( x - 1 ) \} \: dx}

 { : \implies \quad \displaystyle \int \sf ( x² - x + 2x - 2 ) \: \: dx }

 { : \implies \quad \displaystyle \int \sf ( x² + x - 2 ) dx }

 { : \implies \quad \displaystyle \int \sf x² dx + \int \sf x \: dx- \int 2 \: dx }

 { : \implies \quad \displaystyle \sf \dfrac{x^{2+1}}{2+1} + \dfrac{x^{1+1}}{1+1} - 2 \int dx }

 { : \implies \quad \displaystyle \sf \dfrac{x^3}{3} + \dfrac{x^2}{2} - 2x }

 { : \implies \quad \displaystyle  \bf \dfrac{x^{3}}{3} + \dfrac{x^{2}}{2} - 2x + C }

 \quad \qquad { \bigstar { \underline { \boxed { \pmb { { \red { \bf { \displaystyle \int \sf \bigg\{ \dfrac{(x^3+8)(x-1)}{x^2-2x+4} \bigg\} \:dx = \displaystyle  \bf \dfrac{x^{3}}{3} + \dfrac{x^{2}}{2} - 2x + C }}}}}}}}{\bigstar}

Used formulae :-

  •  \displaystyle \int \sf x^{n} \: dx = \dfrac{x^{n+1}}{n+1} + C

  •  \displaystyle \int \sf dx = x + C

  •  { \sf a³ + b³ = ( a + b ) ( a² - ab + b²)}

Additional Information :-

  •  { \boxed { \tt { log ( a ) - log ( b ) = log \bigg ( \dfrac{a}{b} \bigg ) }}}

  •  { \boxed { \tt log_{a} a = 1 }}

  •  { \boxed { \tt log_{x} y = \dfrac{log_{e} y}{log_{e} x } }}

  •  {\boxed { \tt Natural \:\: log \:\: of \:\: x = ln ( x ) = log_{e} x }}

  •  { \boxed { \tt { e = Euler's \:\: number }}}

  •  { \boxed { \tt { e = \displaystyle \tt  \lim_{ \tt n \to \infty } { \bigg ( \tt 1 + \dfrac{1}{n} \bigg )}^{n} }}}

Maclaurin Series :-

Binomial Expansion For all x² < 1

  •  { \boxed { \tt { \orange { {( 1 \pm x)}^{n} = 1 \pm \dfrac{nx}{1!} + \dfrac{n(n - 1)x²}{2!} + . . . . . . . }}}}

  •  { \boxed { \tt { \red { {( 1 \pm x)}^{- n} = 1 \mp \dfrac{nx}{1!} + \dfrac{n(n + 1)x²}{2!} +  . . . . . . . .  }}}}

Maclaurin Series of Sin x :-

  •  { \boxed { \tt { \orange { Sin x = x - \dfrac{x³}{3!} + \dfrac{x⁵}{5!} - . . . . . . . . . . }}}}

Maclaurin Series of Cos x :-

  •  { \boxed { \tt { \green { Cos x = 1 - \dfrac{x²}{2!} + \dfrac{x⁴}{4!} - . . . . . . . . . . }}}}

Maclaurin Series of tan x :-

  •  { \boxed { \tt { \blue { tan x = x + \dfrac{x³}{3} + \dfrac{2x⁵}{15} + . . . . . . . . . . }}}}

Maclaurin Series of  \bf e^{x} :-

  •  { \boxed { \tt { \green { e^{x} = 1 + x + \dfrac{x²}{2!} + \dfrac{x³}{3!} + . . . . . . . . }}}}

Maclaurin Series of  \bf {tan}^{ - 1 } x If & only  \bf { |x| \leqslant 1 } :-

  •  { \boxed { \tt { \orange { {tan}^{-1} x = x - \dfrac{x³}{3} + \dfrac{x⁵}{5} - . . . . . . . . . . }}}}

Commonly Used Derivatives :-

  •  { \boxed { \tt { \red { \dfrac{d}{dx} ( x^{n} ) = n.{(x)^{(n-1)}} }}}}

  •  { \boxed { \tt { \orange { \dfrac{d}{dx} ( a^{x} ) = a^{x} . log ( a ) }}}}

  •  { \boxed { \tt { \blue { \dfrac{d}{dx} \bigg ( \dfrac{u}{v} \bigg ) = \dfrac{v . \dfrac{du}{dx} - u . \dfrac{dv}{dx}}{v²} }}}}

  •  { \boxed { \tt { \green { \dfrac{d}{dx} ( u.v ) = v . \dfrac{du}{dx} + u . \dfrac{dv}{dx} }}}}
Similar questions