Math, asked by Anonymous, 19 days ago


Use  \: the  \: identity  \: (x + a) \: (x + b) \\  =  {x}^{2} + (a + b) \: x + ab \: to \:  \\ find \: the \: following \: product \: .
1. ( xyz - 4 ) ( xyz - 2 )

Answers

Answered by Anonymous
1

Soln \:  =  {(xyz)}^{2}  +  - 6xyz \:  +  \: 8

Step-by-step explanation:

In this Sum :-

  • x = xyz
  • a = - 4
  • b = - 2

____________________________

  • Subtitue & Solve :-

 {(xyz)}^{2}  +  \:  ( - 4) \: xyz \:  + ( - 2) \\  {(xyz)}^{2}  +  \: ( \: ( - 4 \: ) \:  +  \: ( - 2) \: ) \: xyz \:  +  \: ( - 4) \: ( - 2) \\  {(xyz)}^{2}  +  \:  - 6xyz \:  +  \: 8

____________________________

Answered by vennampalli1969
0

x→xyz,a→−4,b→2

x→xyz,a→−4,b→2Using (x+a)(x+b)=x

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz)

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)=x

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)=x 2

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)=x 2 y

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)=x 2 y 2

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)=x 2 y 2 z

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)=x 2 y 2 z 2

x→xyz,a→−4,b→2Using (x+a)(x+b)=x 2 +(a+b)x+ab(xyz−4)(xyz−2)=(xyz) 2 +(−4+2)xyz+(−4×2)=x 2 y 2 z 2 −2xyz−8

pls make me brain list answer

Attachments:
Similar questions