Math, asked by nsnsnnana, 1 month ago


verify [tex]x = \frac{3}{4} \: \: y = \frac{5}{6} \: \: z = \frac{ - 7}{8} [/tex]

Answers

Answered by abhishek917211
3

[tex]x = (y + z) = (x + y) + z \\   \\  x = (y + z) =  \frac{3}{4}  +   ( \frac{5}{6}  +   \frac{ - 7}{8} ) \\   \\  = \frac{3}{4}  + ( \frac{20 + ( - 21)}{24} ) \\   \\   =  \frac{3}{4}  + ( \frac{ - 1}{24} ) \\  \\   =  \frac{3}{4}  +   \frac{ - 1}{24}  \\  \\ =   \frac{18 + ( - 1)}{24}  \\  \\  =  \frac{17}{24}  \\  \\ (x + y ) + z = ( \frac{3}{4}  +  \frac{5}{6} ) +  \frac{ - 7}{8}  \\  \\  = ( \frac{9 + 10}{12} ) +  \frac{ - 7}{8}  \\  \\  =  \frac{19}{12}  +  \frac{ - 7}{8}  \\  \\  =  \frac{38 + ( - 21)}{24}  \\  \\  =  \frac{38 - 21}{24}  \\  \\  =  \frac{17}{24}  \\  \\ x + (y + z) = (x + y) + z \\  \\

verified[/tex]

Answered by abhishek917211
3

[tex]x = (y + z) = (x + y) + z \\   \\  x = (y + z) =  \frac{3}{4}  +   ( \frac{5}{6}  +   \frac{ - 7}{8} ) \\   \\  = \frac{3}{4}  + ( \frac{20 + ( - 21)}{24} ) \\   \\   =  \frac{3}{4}  + ( \frac{ - 1}{24} ) \\  \\   =  \frac{3}{4}  +   \frac{ - 1}{24}  \\  \\ =   \frac{18 + ( - 1)}{24}  \\  \\  =  \frac{17}{24}  \\  \\ (x + y ) + z = ( \frac{3}{4}  +  \frac{5}{6} ) +  \frac{ - 7}{8}  \\  \\  = ( \frac{9 + 10}{12} ) +  \frac{ - 7}{8}  \\  \\  =  \frac{19}{12}  +  \frac{ - 7}{8}  \\  \\  =  \frac{38 + ( - 21)}{24}  \\  \\  =  \frac{38 - 21}{24}  \\  \\  =  \frac{17}{24}  \\  \\ x + (y + z) = (x + y) + z \\  \\

verified[/tex]

Similar questions