Math, asked by ajvsvecag, 2 months ago


 \\  verify\\  \\ x =  \frac{3}{4}  \:  \: y =  \frac{5}{6}  \:  \: z =  \frac{ - 7}{8}

Answers

Answered by abhishek917211
2

x = (y + z) = (x + y) + z \\ \\ x = (y + z) = \frac{3}{4} + ( \frac{5}{6} + \frac{ - 7}{8} ) \\ \\ = \frac{3}{4} + ( \frac{20 + ( - 21)}{24} ) \\ \\ = \frac{3}{4} + ( \frac{ - 1}{24} ) \\ \\ = \frac{3}{4} + \frac{ - 1}{24} \\ \\ = \frac{18 + ( - 1)}{24} \\ \\ = \frac{17}{24} \\ \\ (x + y ) + z = ( \frac{3}{4} + \frac{5}{6} ) + \frac{ - 7}{8} \\ \\ = ( \frac{9 + 10}{12} ) + \frac{ - 7}{8} \\ \\ = \frac{19}{12} + \frac{ - 7}{8} \\ \\ = \frac{38 + ( - 21)}{24} \\ \\ = \frac{38 - 21}{24} \\ \\ = \frac{17}{24} \\ \\ x + (y + z) = (x + y) + z \\ \\

Verified

Answered by bbjkjgg
1

x = (y + z) = (x + y) + z \\   \\  x = (y + z) =  \frac{3}{4}  +   ( \frac{5}{6}  +   \frac{ - 7}{8} ) \\   \\  = \frac{3}{4}  + ( \frac{20 + ( - 21)}{24} ) \\   \\   =  \frac{3}{4}  + ( \frac{ - 1}{24} ) \\  \\   =  \frac{3}{4}  +   \frac{ - 1}{24}  \\  \\ =   \frac{18 + ( - 1)}{24}  \\  \\  =  \frac{17}{24}  \\  \\ (x + y ) + z = ( \frac{3}{4}  +  \frac{5}{6} ) +  \frac{ - 7}{8}  \\  \\  = ( \frac{9 + 10}{12} ) +  \frac{ - 7}{8}  \\  \\  =  \frac{19}{12}  +  \frac{ - 7}{8}  \\  \\  =  \frac{38 + ( - 21)}{24}  \\  \\  =  \frac{38 - 21}{24}  \\  \\  =  \frac{17}{24}  \\  \\ x + (y + z) = (x + y) + z \\  \\

Similar questions