Math, asked by Anonymous, 1 month ago


verify x = \frac{3}{4} \: \: y = \frac{5}{6} \: \: z = \frac{ - 7}{8}
explain required ​

Answers

Answered by llCrownPrincell
5

Step-by-step explanation:

Answer

(i) [

4

x

3

5

]=[

y

1

z

5

]

As the given matrices are equal, their corresponding elements are also equal.

Comparing the corresponding elements, we get: x=1,y=4, and z=3

(ii) [

x+y

5+z

2

xy

]=[

6

5

2

8

]

As the given matrices are equal, their corresponding elements are also equal. Comparing the corresponding elements, we get:

x+y=6,xy=8,5+z=5

Now, 5+z=5⇒z=0

We know that:

(x−y)

2

=(x+y)

2

−4xy

⇒(x−y)

2

=36−32=4

⇒x−y=±2

Now, when x−y=2 and x+y=6, we get x=4 and y=2

When x−y=−2 and x+y=6, we get x=2 and y=4

∴x=4,y=2 and z=0orx=2,y=4 and z=0

Answered by spyXsenorita
2

GIVEN

verify x = \frac{3}{4} \: \: y = \frac{5}{6} \: \: z = \frac{ - 7}{8}

TO FIND:-

  • required solutions

EXPLAIN:-

x = (y + z) = (x + y) + z \\   \\  x = (y + z) =  \frac{3}{4}  +   ( \frac{5}{6}  +   \frac{ - 7}{8} ) \\   \\  = \frac{3}{4}  + ( \frac{20 + ( - 21)}{24} ) \\   \\   =  \frac{3}{4}  + ( \frac{ - 1}{24} ) \\  \\   =  \frac{3}{4}  +   \frac{ - 1}{24}  \\  \\ =   \frac{18 + ( - 1)}{24}  \\  \\  =  \frac{17}{24}  \\  \\ (x + y ) + z = ( \frac{3}{4}  +  \frac{5}{6} ) +  \frac{ - 7}{8}  \\  \\  = ( \frac{9 + 10}{12} ) +  \frac{ - 7}{8}  \\  \\  =  \frac{19}{12}  +  \frac{ - 7}{8}  \\  \\  =  \frac{38 + ( - 21)}{24}  \\  \\  =  \frac{38 - 21}{24}  \\  \\  =  \frac{17}{24}  \\  \\ x + (y + z) = (x + y) + z \\  \\

•°• verified

Similar questions