Math, asked by mayuripardeshi432, 7 months ago


volume = 8ky^{2}  + 24ky - 14k

Answers

Answered by Mihir1001
19

\huge{\underline{\bf\red{QuestiØn} :}}

 \sf \: Find \: the \: dimeansions \\  \sf of \: the \: cuboid \: having \\  \boxed{  {\sf{volume}} = 8k {y}^{2}  + 24ky - 14k}.

\huge{\underline{\bf\blue{SolutiØn}\ :}}

To find the dimensions of the cuboid that are length, breadth & height of the cuboid.

For this, we have to factorise the volume -

We have,

\begin{aligned} \\ volume & = 8k {y}^{2} + 24ky - 14k \\  \\   & = 2k(4 {y}^{2}  + 12y - 7) \\  \\  & = 2k \big[4 {y}^{2}  + (14 - 2)y - 7 \big]  \\  \\  & = 2k \big[4 {y}^{2}  + 14y - 2y - 7 \big]   \\  \\ & = 2k \big[ \: 2y(2y + 7) - 1(2y + 7) \big] \\  \\   & = 2k \big[ (2y + 7)(2y - 1)\big]  \\  \\  & = 2k(2y + 7)(2y - 1) \\  \\  & = \sf length \times breadth \times height & & \end{aligned}

HENCE ,

The dimensions of the cuboid are :-

  • 2k

  • 2y + 7

  • 2y - 1

\red{\rule{5.5cm}{0.02cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Answered by teeshajindal11193
1

Answer:

i have given the answer.. hope it helps you...........

Attachments:
Similar questions