Math, asked by Salmonpanna2022, 3 months ago



Wrong  \: answer☺ =  User \:  50 \:  Answers   \\  \: reported. \huge☠ \\

Attachments:

Answers

Answered by Anonymous
9

Answer:

0

Step-by-step explanation:

\displaystyle   \sf\lim_{x  \to 0} \frac{ \sin \: x -  \tan { }^{ - 1}x }{x {}^{2} \log(1 + x) } \\ \\  :   \implies \frac{ \sin \: 0 -  { \tan}^{ - 1}0 }{(0) {}^{2} \log \: (1 + 0) {}^{2}  }   \\    \\ : \implies \frac{0 -   \red{{ \tan}^{ - 1}   { \tan}^{ - 1} }0}{0  \times  \sf log(1) } \\ \\ \sf \boxed{\sf We \, Know \log 1 = 0} \\ \\  :  \implies \:  \frac{0 - 0}{0 \times 0}  \\   \\  : \rightarrow \red{ \boxed{ \green{0}}}

••••♪♪

Answered by khushi191135518
1

Answer:

0 is the correct answer

hope it helps you

Similar questions